P. V. Pavlov, A. P. Vladimirov
DEFECT DETECTION IN AVIATION PLEXIGLASS PARTS BY ANALYZING
THE PARAMETERS OF RECORDED SPECKLE FIELDS
DOI: 10.17804/2410-9908.2024.5.195-207 The paper presents the results of experimental studies on the use of techniques for applying the method of speckle structures of optical radiation for the tasks of determining the residual life, flaw detection testing, and assessing the health of aircraft cabin glazing elements made of AO-120 aviation plexiglass.
Keywords: defect, glass, speckle, movement, nondestructive testing References:
- Mekalina, I.V., Bogatov, V.A., Trigub, T.S., and Sentiourine, E.G. Aviation organic glasses. In: Trudy VIAM, 2013, 11, 4. (In Russian).
- Mekalina, I.V., Aizatulina, M.K., Sentiourin, E.G., and Popov, A.A. Features of influence of atmospheric factors on aviation organic glass. In: Trudy VIAM, 2018, 11 (71), 28–34. (In Russian). DOI: 10.18577/2307-6046-2018-0-11-28-34.
- Akolzin, S.V. and Frolkov, A.I. Performance restoration of the heat-resistant aircraft glazing during repair and operation. Aviatsionnaya Promyshlennost, 2014, 1, 41–43. (In Russian).
- Yakovlev, N.O., Akolzin, S.V., and Shvets, S.M. Determination of the crack resistance of polymer materials. Novosti Materialovedeniya. Nauka i Tekhnika, 2014, 4, 3.
- Leendertz, J.A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E: Scientific Instruments, 1970, 3 (3), 214–218. DOI: 10.1088/0022-3735/3/3/312.
- Vladimirov, A.P. and Mikushin, V.I. Interferometric determination of vector components of relative displacements: theory and experiment. In: SPIE Proceedings, 1999, 3726, 38–43. DOI: 10.1117/12.341416.
- Fomin, N.A. Speckle Photography for Fluid Mechanics Measurements, 1st ed., Springer–Verlag, Berlin, 1998, 219 p.
- Vladimirov, A.P. Speckle metrology of dynamic macro- and microprocesses in deformable media. Optical Engineering, 2016, 55 (12), 121727. DOI: 10.1117/1.OE.55.12.121727.
- Vladimirov, A.P., Kamantsev, I.S., Drukarenko, N.A., Trishin, V.N., Akashev, L.A., and Druzhinin, A.V. Assessment of fatigue damage in organic glass by optical methods. Optics and Spectroscopy, 2019, 127, 943–953. DOI: 10.1134/S0030400X19110286.
- Vladimirov, A.P., Kamantsev, I.S., Ishchenko, A.V., Veselova, V.E., Gorkunov, E.S., Gladkovskiy, S.V., and Zadvorkin, S.M. Study of the fatigue crack origin process by changing the sample surface relief and its speckle images. Deformatsiya i Razrushenie Materialov, 2015, 1, 21–26. (In Russian).
- Vladimirov, A.P., Kamantsev, I.S., Veselova, V.E., Gorkunov, E.S. and Gladkovskiy, S.V. Use of dynamic speckle interferometry for contactless diagnostics of fatigue crack initiation and determining its growth rate. Technical Physics, 2016, 61, 563–568. DOI: 10.1134/S106378421604023X.
- Vladimirov, A.P. and Ponosov, Yu.S. Application of speckle dynamics and Raman light scattering to study the fracture features of pipe steel at high-cycle fatigue. Vestnik PNIPU. Mekhanika, 2018, 3, 138–146. (In Russian). DOI: 10.15593/perm.mech/2018.3.13.
- Vladimirov, A.P., Kamantsev, I.S., and Drukarenko, N.A. Nucleation and initiation of cracks under high-cycle fatigue in the EP679 maraging steel. In: AIP Conference Proceedings, 2019, 2176, 030019. DOI: 10.1063/1.5135143.
Article reference
Pavlov P. V., Vladimirov A. P. Defect Detection in Aviation Plexiglass Parts by Analyzing the Parameters of Recorded Speckle Fields // Diagnostics, Resource and Mechanics of materials and structures. -
2024. - Iss. 5. - P. 195-207. - DOI: 10.17804/2410-9908.2024.5.195-207. -
URL: http://eng.dream-journal.org/issues/content/article_463.html (accessed: 12/30/2024).
|