A. V. Gorshkov, E. Yu. Prosviryakov
STAGNATION POINTS OF AN INHOMOGENEOUS SOLUTION DESCRIBING CONVECTIVE EKMAN FLOW IN THE OCEANIC EQUATORIAL ZONE
DOI: 10.17804/2410-9908.2022.1.052-066 An inhomogeneous analytical solution describing a stratified large-scale isothermal Ekman–Poiseuille flow of a viscous incompressible fluid in the equatorial zone is obtained. A set of stagnation points of this solution is studied. Temperature is set at the flow boundaries. Tangential stresses simulating the effect of wind are specified at the free boundary. The Navier slip conditions are specified on the solid surface. The solution is constructed in the form of functions, linear in horizontal coordinates, with the coefficients dependent on the vertical coordinate. The coefficients of the linear functions are obtained as polynomials. The condition of consistency of the overdetermined equation system describing the specified flow is obtained. The consistency condition imposes restrictions on the boundary conditions. It is shown that the set of stagnation points lies on a straight line.
Keywords: viscous fluid convection, Ekman flow, Coriolis force, equator, inhomogeneous solution References:
- Pedlosky J. Geophysical fluid dynamics, Berlin, New York, Springer, 1987.
- Zyryunov V.N. Teoriya ustanovivshikhsya okeanicheskikh techeniy [Theory of steady-state oceanic. currents]. L.: Gidrometeoizdat, 1985, 248 p. (In Russian).
- Ekman V.W. On the Influence of the Earths Rotation on Ocean Currents. Arkiv för matematik, astronomi och fysik, Bd. 2, no. 11.
- Korotaev G.K., Mikhaylova E.N., Shapiro N.B. Teoriya ekvatorialnykh protivotecheniy v Mirovom okeane [Theory of Equatorial Countercurrents in the World Ocean]. Kiev, Nauk. Dumka Publ., 1986, 208 p. (In Russian).
- Felzenbaum A.I. Teoreticheskie osnovy i metody rascheta ustanovivshikhsya morskikh techeniy [Theoretical Foundations and Methods for Calculating Steady Sea Currents]. AN SSSR Publ., 1960, 127 p. (In Russian).
- Gorshkov A.V., Prosviryakov E.Yu. Ekman Convective Layer Flow of a Viscous Incompressible Fluid. Izvestiya, Atmospheric and Oceanic Physics, 2018, vol. 54, No. 2, pp. 189–195. DOI: 10.1134/S0001433818020081.
- Gorshkov A.V. Prosviryakov E.Yu. Convective flow in the solid rotation of a viscous incompressible fluid. AIP Conference Proceedings, 2017, 1915, 040020. DOI: 10.1063/1.5017368.
- Ingel L.Kh., Aristov S.N. The class of exact solutions of nonlinear problems on thermal circulation associated with volumetric heat release in the atmosphere. Tr. In-ta Eksperim. Meteorol., 1996, No. 27 (162), pp. 142–157. (In Russian).
- Gorshkov A.V. Prosviryakov E.Yu. Isobaric Vortex Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition // AIP Conference Proceedings, 2018, vol. 2053, 040030. DOI: 10.1063/1.5084468.
- Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes Equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, No. 5, pp. 642–662. DOI: 10.1134/S0040579509050066.
- Ershkov Sergey V., Prosviryakov Evgeniy Yu., Burmasheva Natalya V., and Christianto Victor. Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 2021, vol. 53, No. 4, pp. 044501. DOI:10.1088/1873-7005/ac10f0.
- Aristov S.N., Prosviryakov E.Yu. Aristov S.N., Prosviryakov E.Y. On laminar flows of planar free convection. Rus. J. Nonlin. Dyn., 2013, vol. 9, No. 4, pp. 651–657. DOI: 10.20537/nd1304004. (In Russian).
- Aristov S.N., Prosviryakov E.Yu. Inhomogeneous Couette Flows. Nelin. Dyn., 2014, vol. 10, no. 2, pp. 177‒182. DOI: 10.20537/nd1402004. (In Russian).
- Aristov S.N., Shvarts K.G. Vikhrevye techeniya advektivnoy prirody vo vrashchayushchemsya sloe zhidkosti [Vortical Flows of Advective Nature in a Rotating Fluid Layer]. Perm, Perm. Gos. Univ. Publ., 2006, 154 p. (In Russian).
- Aristov S.N., Shvarts K.G. Vikhrevye techeniya v tonkikh sloyakh zhidkosti [Vortical Flows in Thin Fluid Layers]. Kirov, VyatGU Publ., 2011. (In Russian).
- Aristov S.N., Shvarts K.G. Advective flow in a rotating liquid film. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, No. 1, pp. 188–194. DOI: 10.1134/S0021894416010211.
- Neto C., Evans D., Bonaccurso E., Hans-Jürgen Butt and Vincent S.J. Craig Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 2005, vol. 68, No. 12, pp. 2859–2897. DOI: 10.1088/0034-4885/68/12/R05.
- Borzenko E.I., Diakova O.A., Shrager G.R. Studying the slip phenomenon for a viscous flu-id flow in a curved channel. Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, No. 2 (28), pp. 35–44. (In Russian).
Article reference
Gorshkov A. V., Prosviryakov E. Yu. Stagnation Points of An Inhomogeneous Solution Describing Convective Ekman Flow in the Oceanic Equatorial Zone // Diagnostics, Resource and Mechanics of materials and structures. -
2022. - Iss. 1. - P. 52-66. - DOI: 10.17804/2410-9908.2022.1.052-066. -
URL: http://eng.dream-journal.org/issues/content/article_356.html (accessed: 11/21/2024).
|