Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






N. V. Burmasheva and E. Yu. Prosviryakov


DOI: 10.17804/2410-9908.2020.4.062-078

The article proposes an approach to estimating the number of stratification points in hydrodynamic fields. The article provides a method allowing one to estimate from above the number of zero points of hydrodynamic fields (points and stratification zones). The application of the proposed methodology is illustrated by several examples of the analysis of the exact solution to the problem of describing steady laminar flows of a viscous incompressible fluid in an infinite horizontal layer. In example 1, convection is induced by setting the shear stress field at one of the layer boundaries. The features of the background temperature profile, which is a seventh-degree polynomial, are discussed. It is shown that this component of the temperature field is a nonmonotonic function and that the obtained exact solution for the temperature field can describe the stratification of the considered fluid layer into one, two or three zones relative to the reference value. Example 2 illustrates evaluating the number of the zero points of the velocity field components in a vertically swirling fluid, in which convective flows are initiated by thermocapillary forces at the upper boundary of the layer. The exact solution studied in this example is a sixth-degree polynomial, which can have at most two zeros inside the region under consideration. This means that this exact solution is able to describe the stratification of the fluid layer into three zones, in each of which the test speed takes values of the same sign.

Keywords: laminar flow, vertically swirling fluid, exact solution, thermocapillary convection, tangential stresses, zero field points, field stratification


  1. Nalivkin D.V. Uragani, buri i smerchi [Hurricanes, Storms and Tornadoes]. Leningrad, Nauka, 1969, 487 p. (In Russian).
  2. Monin A.S., Kamenkovich V.M. Okeanologiya. Fizika okeana. T. I. Gidrofizika okeana [Oceanology. Physics of the Ocean. Vol. I: Ocean Hydrophysics]. Moscow, Nauka, 1987, 466 p. (In Russian).
  3. Alekseenko S.V., Kuybin P.A., Okulov V.L. Vvedenie v teoriyu koncentrirovannikh vikhrey [Introduction to Concentrated Vortex Theory]. Novosibirsk, Institut teplofiziki im. S.S. Kutateladze Publ., 2003, 504 p. (In Russian).
  4. Lavrent’ev M.A., Shabat B.V. Problemi gidrodinamiki i ikh matematicheskie modeli [Problems of Hydrodynamics and their Mathematical Models, 2-nd education]. Moscow, Nauka Publ., 1973, 407 p. (In Russian).
  5. Burmasheva N.V., Prosviryakov E.Yu. A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation. Vestn. Sam. gos. tekh. univer. Ser. Fiz.-mat. nauki, 2017, vol. 21, no. 1, pp. 180–196. DOI: 10.14498/vsgtu1527 (In Russian).
  6. Shvarts K.G. Plane-parallel advective flow in a horizontal layer of an incompressible fluid with an internal linear heat source. Fluid Dynamics, 2018, vol. 53, no. 1, pp. S24–S28. DOI: 10.1134/S0015462818040237.
  7. Burmasheva N.B., Prosviryakov E.Yu. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary. AIP Conference Proceedings, 2017, vol. 1915, iss. 1. DOI: 10.1063/1.5017353.
  8. Burmasheva N.V., Prosviryakov E.Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Vestn. Sam. gos. tekh. univer. Ser. Fiz.-mat. nauki, 2019, vol. 23, no. 2, pp. 341–360. DOI: 10.14498/vsgtu1670.
  9. Burmasheva N.B., Prosviryakov E.Yu. Investigation of a velocity field for the Marangoni shear convection of a vertically swirling viscous incompressible fluid. AIP Conference Proceedings, 2018, vol. 2053, iss. 1. DOI: 10.1063/1.5084449.
  10. Bekezhanova V.B., Rodionova A.V. Longwave stability of two-layer fluid flow in the inclined plane. Fluid Dynamics, 2015, vol. 50, no. 6, pp. 723–736. DOI: 10.1134/S0015462815060010.
  11. Andreyev V.K., Bekezhanova V.B. The free-parameter solution of the convection equations in a vertical cylinder with a volume heat source. Journal of Applied Mathematics and Mechanics, 2013, vol. 77, no. 6, pp. 595–602. DOI: 10.1016/j.jappmathmech.2014.03.004.
  12. Burmasheva N.B., Larina E.A., Prosviryakov E.Yu. Unidirectional convective flows of a viscous incompressible fluid with slippage in a closed layer. AIP Conference Proceedings, 2019, vol. 2176, iss. 1. DOI: 10.1063/1. 5135147.
  13. Burmasheva N.B., Prosviryakov E.Yu. Temperature field investigation in layered flows of a vertically swirling viscous incompressible fluid under two thermocapillar forces at a free boundary. DReaM, 2019, iss. 1, pp. 6–42. DOI: 10.17804/2410-9908.2019.1.006-042.
  14. Burmasheva N.V., Prosviryakov E. Yu. Thermocapillary convection of a vertical swirling liquid. Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 230–239. DOI: 10.1134/S0040579519060034.
  15. Bekezhanova V.B. Convective instability of Marangoni-Poiseuille flow under a longitudinal temperature gradient. Journal of Applied Mechanics and Technical Physics, 2011, vol. 52, no. 1, pp. 74–81. DOI: 10.1134/S0021894411010111.
  16. Burmasheva N.V., Prosviryakov E.Yu. Exact solution of Navier—Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 2. pp. 79–87. (In Russian).
  17. Birikh R.V., Pukhnachev V.V., Frolovskaya O.A. Convective flow in a horizontal channel with non-newtonian surface rheology under time-dependent longitudinal temperature gradient. Fluid Dynamics, 2015, vol. 50, no. 1, pp. 173–179. DOI: 10.1134/S0015462815010172.         
  18. Burmasheva N.V., Prosviryakov E.Yu. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 32, pp. 33–48. DOI: 10.26516/1997-7670.2020.32.33. (In Russian).
  19. Goncharova O.N. Two-layer fluid flows with evaporation at an interface in the presence of an anomalous thermocapillary effect. Izvestiya of Altai State University, 2015, no. 1–2 (85), pp. 101–105. DOI: 10.14258/izvasu(2015)1.2-18. (In Russian).
  20. Aleksandrov A.D., Kolmogorov A.N., Lavrent’ev M.A. Matematika, eyo soderganie, metody i znachenie. T. 1 [Mathematics, its contents, methods and meaning. Vol. 1]. Moscow, Izdatelstvo Akademii nauk SSSR Publ., 1956, 536 p. (In Russian).
  21. Shafarevich I.R. O reshenii uravneniy vishikh poryadkov (metod Shturma) [On solving equations of higher degrees (Sturm method)]. Moscow, Gostekhizdat Publ., 1954, 24 p. (In Russian).
  22. Bashmakova I.G. On the proof of fundamental theorem of algebra. In: Istoriko-matematicheskie issledovaniya [Historical and Mathematical Research. Issue 10]. Moscow, GITL Publ., 1957, pp. 257–305. (In Russian).
  23. Demidovich B.P. Lekcii po matematicheskoy teorii ustoychivosti: uchebnoe posobie [Lectures on Mathematical Theory of Stability: Educational book]. Sankt-Peterburg, Lan’ Publ., 2008, 480 p. (In Russian).
  24. Petrov A.G. Exact solution of the Navier–Stokes equations in a fluid layer between the moving parallel plates. Journal of Applied Mechanics and Technical Physics, 2012, vol. 53, no. 5, pp. 642-646. DOI: 10.1134/S0021894412050021.
  25. Shmiglevskiy Yu.D. Analiticheskie issledovaniya dinamiki zhidkosti i gaza [Analytical Studies of Fluid and Gas Dynamics]. Moscow, Editorial URSS Publ., 1999, 232 p. (In Russian).
  26. Kochin N.E., Kibel’ I.A., Roze N.B. Teoreticheskaya gidrodinamika. Chast’ 2. [Theoretical Hydrodynamics. Part 2]. Moscow: FIZMATLIT Publ., 1963, 728 p. (In Russian).
  27. Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid and Gas Mechanics]. M. : DROFA Publ., 2003, 840 p. (In Russian).
  28. Shvarts K.G. Advective Flow of a rotating fluid layer in a vibrational field. Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 3, pp. 261–270. DOI: 10.20537/nd190305.
  29. Aristov S.N., Shvarts K.G. Advective flow in a rotating liquid film. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 1, pp. 188–194. DOI: 10.1134/S0021894416010211.
  30. Gershuni G.Z., Zhukhovitskii E.M. Convective Stability of Incompressible Fluids [Original Russian text published in Gershuni G.Z., Zhukhovitskii E.M. Konvektivnaya ustoichivost’ neszhimaemoy zhidkosti. Moscow, Nauka, 1972, 392 p.], Israel Program for Scientific Translations, Jerusalem, Keter Publishing House, 1976, 330 p.
  31. Landau L.D., Lifshitz E.M. Fluid Mechanics (Volume 6 of A Course of Theoretical Physics) [Original Russian text published in Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. Tom 6. Gidrodinamika. Moscow, FIZMATLIT, 1986, 736 p.], Oxford, Pergamon Press, 1987, 536 p.
  32. Boussinesq J. Theorie analitique de la chaleur. Vol. 2, Paris, GauthierVillars, 1903, 625 p.
  33. Oberbeck A. Uber die warmeleitung der flussigkeiten bei der berucksichtigung der stromungen infolge von temperaturdifferenzen. Annal. Phys. Chem., 1879, bd. 7, № 6, s. 271–292. 
  34. Aristov S.N., Prosviryakov E.Yu. Nonuniform convective Couette flow. Fluid Dynamics, 2016, vol. 51, no. 5, p. 581–587. DOI: 10.1134/S001546281605001X.
  35. Aristov S.N., Prosviryakov E.Y. On laminar flows of planar free convection. Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 4, pp. 651–657. DOI: 10.20537/nd1304004. (In Russian).
  36. Zaytsev M.L., Akkerman V.B. Hypothesis on reduction of overdetermined systems of differential equations and its application to equations of hydrodynamics. Vestn. Voronezh. gos. univer. Ser.: Fizika. Matematika, 2015, no. 2, pp. 5–27. (In Russian).
  37. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics]. Moscow, Nauka Publ., 1966, 742 p. (In Russian).
  38. Pirov R. On compatibility conditions and manilolds of solutions to one class of overdetermined systems of second order partial differential equations. Ufa Math. Journal, 2016, vol. 8, no. 2, pp. 58–64. DOI: 10.13108/2015-0-2-58.
  39. Targ S.M. Coriolis force. In: Fizicheskaya entsiklopediya [Physical Encyclopedia. Vol. 2]. Moscow, Sovetskaya entsiklopediya Publ., 1990, 704 p. (In Russian).
  40. Coriolis G. Sur les equations du mouvement relative des systemes de corps. Journ. Ecole polytechn., 1835, vol. 15, no. 24, pp. 142–154.
  41. Lopez-Mariscal M. Further Coriolis correlation considerations. Physics Today, 2012, vol. 65, iss. 11, pp. 8–9. DOI: 10.1063/PT.3.1764.
  42. Graney Ch.M. Coriolis effect, two centuries before Coriolis. Physics Today, 2011, vol. 64, iss. 8, pp. 8–9. DOI: 10.1063/PT.3.1195.
  43. Tartishnikov E.E. Matrichniy analiz i lineynaya algebra [Matrix Analysis and Linear Algebra]. Moscow, MGU Publ., 2005, 372 p. (In Russian).


Article reference

Prosviryakov N. V. Burmasheva and E. Yu. Studying the Stratification of Hydrodynamic Fields for Laminar Flows of Vertically Swirling Fluid // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 4. - P. 62-78. -
DOI: 10.17804/2410-9908.2020.4.062-078. -
URL: http://eng.dream-journal.org/issues/content/article_297.html
(accessed: 05/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru