N. V. Burmasheva, E. Yu. Prosviryakov
EXACT SOLUTION FOR DESCRIBING A UNIDIRECTIONAL MARANGONI FLOW OF A VISCOUS INCOMPRESSIBLE FLUID WITH THE NAVIER BOUNDARY CONDITION. PRESSURE FIELD INVESTIGATION
DOI: 10.17804/2410-9908.2020.2.061-075 The article studies the properties of the pressure field in a unidirectional thermocapillary flow of a viscous incompressible fluid in an infinite horizontal layer of a given thickness. A distinctive feature of the considered boundary value problem is the inclusion of the Navier slip condition at the lower (solid) boundary of the layer instead of the classical condition of fluid no-slip on the solid surface. Modeling of the properties of the described flow is carried out using the system of Oberbeck-Boussinesq equations, its exact solution being obtained. The exact solution belongs to the Ostroumov-Birikh class. Hydrodynamic fields are described by polynomials. The degree of the polynomial describing the background pressure relative to the vertical coordinate is eight. The horizontal (longitudinal) pressure gradients are parabolic functions. This solution describes the multiple stratification of the pressure field. For the Navier slip condition and for special cases of no-slip and perfect slip conditions, corresponding studies are carried out to determine the number of pressure field stratification zones along the vertical coordinate.
Keywords: layered flow, Oberbeck-Boussinesq system of equations, exact solution, Ostroumov-Birikh class, unidirectional flow, counterflows, Marangoni convection, Navier condition References:
- Gershuni G.Z., Zhukhovitskii E.M. Convective Stability of Incompressible Fluids: Israel Program for Scientific Translations. Jerusalem, Keter Publishing House, 1976, 330 p.
- Landau L.D., Lifshitz E.M. Fluid Mechanics. Pergamon Press, Oxford, 1987. 539 p.
- Aristov S.N., Polyanin A.D. Exact solutions of unsteady three-dimensional navier-stokes equations. Doklady Physics, 2009, vol. 54, no. 7, pp. 316-321. DOI: 10.1134/S1028335809070039
- Polyanin A.D., Aristov S.N. Systems of hydrodynamic type equations: Exact solutions, transformations, and nonlinear stability. Doklady Physics, 2009, vol. 54, no. 9, pp. 429-434. DOI: 10.1134/S1028335809090079
- Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, no. 5, pp. 642-662. DOI: 10.1134/S0040579509050066
- Aristov S.N., Pukhnachev V.V. On the Equations of Axisymmetric Motion of a Viscous Incompressible Fluid. Doklady Physics, 2004, vol. 49, no. 2, pp. 112-115.
- Aristov S.N., Prosviryakov E.Yu. A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, Vol. 50, no. 3, pp. 286-293. DOI: 10.1134/S0040579516030027
- Imad Khan, Arif Hussain, Muhammad Yousaf Malik, Safyan Mukhtar On magnetohydrodynamics Prandtl fluid flow in the presence of stratification and heat generation. Physica A: Statistical Mechanics and its Applications, 2019, vol. 540. DOI: 10.1016/j.physa.2019.123008
- D. Gopal, S. Hari Shing Naik, N. Kishan, C. S. K. Raju The impact of thermal stratification and heat generation/absorption on MHD carreau nano fluid flow over a permeable cylinder. SN Applied Sciences, 2020, vol. 2, pp. 639. DOI: 10.1007/s42452-020-2445-5
- Mair Khan, Muhammad Yousaf Malik, T. Salahuddin, Arif Hussain Change in viscosity of Maxwell fluid flow due to thermal and solutal stratifications. Journal of Molecular Liquids, 2019, vol. 288, pp. 110970. DOI: 10.1016/j.molliq.2019.110970
- Knyazev D.V., Kolpakov I.Y. The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius. Rus. J. Nonlin. Dyn., 2015, vol. 11, no. 1, pp. 89–97. DOI: 10.20537/nd1501004. (In Russian).
- Borzenko E.I., Diakova O.A., Shrager G.R. Studying the slip phenomenon for a viscous fluid flow in a curved channel. Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2 (28), pp. 35–44. (In Russian).
- Aristov S.N., Knyazev D.V. Three-dimensional viscous jet flow with plane free boundaries. Fluid Dynamics, 2017, vol. 52, no. 2, pp. 215–218. DOI: 10.1134/S0015462817020053.
- Birikh R.V., Pukhnachev V.V., Frolovskaya O.A. Convective flow in a horizontal channel with non-Newtonian surface rheology under time-dependent longitudinal temperature gradient. Fluid Dyn., 2015, vol. 50, no. 1, pp. 173–179. DOI: 10.1134/S0015462815010172.
- Garifullin F.A. Free convection in horizontal liquid layers. Soros educational journal, 2000, vol. 6, no. 8, pp.108-114
- Burmasheva N.V., Prosviryakov E.Yu. An exact solution to the description of a unidirectional Marangoni flow of a viscous incompressible fluid with the Navier boundary condition. Velocity field investigation. Diagnostics, Resource and Mechanics of materials and structure, 2019, iss. 5, pp. 23–39. DOI: 10.17804/2410-9908.2019.5.023-039 (In Russian).
- Burmasheva N.V., Prosviryakov E.Yu. An exact solution for describing the unidirectional Marangoni flow of a viscous incompressible fluid with the Navier boundary condition. Temperature field investigation. Diagnostics, Resource and Mechanics of materials and structures, 2020, iss. 1, pp. 6–23. DOI: 10.17804/2410-9908.2020.1.006-023 (In Russian).
- Naresh Kumar Nedunuri, Odelu Ojjela, D. R. V. S. R. K. Sastry Effects of double stratification on MHD chemically reacting second‐grade fluid through porous medium between two parallel plates. Heat Transfer-Asian Research, 2019, vol. 48, no. 8. DOI: 10.1002/htj.21564
- Hafiz Abdul wahab, Hussan Zeb, Sara Bhatti, Yunyoung Nam Numerical Study for the Effects of Temperature Dependent Viscosity Flow of Non-Newtonian Fluid with Double Stratification. Applied Sciences, 2020, vol. 10, no. 2, pp. 708. DOI: 10.3390/app10020708
- Burmasheva N.V., Prosviryakov E. Yu. Thermocapillary Convection of a Vertical Swirling Liquid. Theoretical Foundations of Chemical Engineering, 2020, vol. 54, no. 1, pp. 230–239. DOI: 10.1134/S0040579519060034
- Burmasheva N.V., Larina E.A., Prosviryakov E.Yu. Prosviryakov Unidirectional Convective Flows of a Viscous Incompressible Fluid with Slippage in a Closed Layer. AIP Conference Proceedings, 2019, vol. 2176, pp. 030023-1—03023-5. DOI: 10.1063/1.5135147
- Mosina E.V., Chеrnyshеv I.V. The permeability of two dimentional porous medium of square fibers (cell model). Science Journal of Volgograd State University. Mathematics. Physics, 2017, no. 2 (39), pp. 56–64. DOI: 10.15688/jvolsu1.2017.2.5 (In Russian).
- Gorshkov A.V., Prosviryakov E.Yu. Analytic solutions of stationary complex convection describing a shear stress field of different signs. Труды ИММ, 2017, vol. 23, no. 2, pp. 32–41. DOI: 10.21538/0134-4889-2017-23-2-32-41 (In Russian).
- Burmasheva N. V., Prosviryakov E. Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta-seriyafiziko-matematicheskiye nauki, 2019, vol. 23, no. 2, pp. 341–360. DOI: 10.14498/vsgtu1670.
- Privalova V.V., Prosviryakov E.Yu. Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer. Russian Journal of Nonlinear Dynamics, 2018, vol. 14, no. 1, pp. 69-79. DOI: 10.20537/nd1801007
- Petrov A. G. Exact solution of the Navier–Stokes equations in a fluid layer between the moving parallel plates. Journal of Applied Mechanics and Technical Physics, 2012, vol. 53, no. 5, pp. 642–646. DOI: 10.1134/S0021894412050021.
- Kolchanov N. V., Putin G. F. Gravitational convection of magnetic colloid in a horizontal layer. International Journal of Heat and Mass Transfer, 2015, vol. 89, pp. 90-101.
- Burmasheva N.V., Prosviryakov E. Yu. Exact solution of the Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Trudy Instituta matematiki I mekhaniki UrO RAN, 2020, vol. 26, no. 2 (accepted in print) (In Russian).
- Gorshkov A.V., Prosviryakov E.Y. Ekman Convective Layer Flow of a Viscous Incompressible Fluid. Izvestiya. Atmospheric and Oceanic Physics, 2018, vol. 54, no. 2, pp. 189-195. DOI: 10.1134/S0001433818020081
- Privalova V.V., Prosviryakov E.Yu., Simonov M.A. Nonlinear gradient flow of a vertical vortex fluid in a thin layer. Russian journal of nonlinear dynamics, 2019, vol. 15, no. 3, 271–283. DOI: https://doi.org/10.20537/nd190306
- Navier С.L.M.H. M'emoire sur les lois du mouvement des fluids. M'em. Acad. Sci. Inst. de France, 1823, vol. 2, no. 6. pp. 389–440.
- Ostroumov G.A. Free convection under the condition of the internal problem. Washington, NACA Technical Memorandum 1407, National Advisory Committee for Aeronautics, 1958.
- Birikh R.V. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys., 1966, no. 7, pp. 43-44.
- Marangoni C. Sull espansione delle goccie di un liquido galleggiante sulla superficie di altro liquid. Pavia: Tipografia dei fratelli Fusi, 1865.
Article reference
Burmasheva N. V., Prosviryakov E. Yu. Exact Solution for Describing a Unidirectional Marangoni Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition. Pressure Field Investigation // Diagnostics, Resource and Mechanics of materials and structures. -
2020. - Iss. 2. - P. 61-75. - DOI: 10.17804/2410-9908.2020.2.061-075. -
URL: http://eng.dream-journal.org/issues/content/article_288.html (accessed: 11/21/2024).
|