Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. V. Struzhanov

A METHOD FOR CALCULATING STRESSES IN A MULTIPLY CONNECTED ELASTIC BODY

DOI: 10.17804/2410-9908.2020.1.034-42

An analytical method for determining the stress state in elastic bodies with a cavity is developed. The technique is based on using solutions to problems of the theory of elasticity for two simply connected regions, namely, for a body without a cavity and a space that is the exterior of a cavity. Special operator equations are obtained to determining the required stresses in a multiply connected body. An iterative method for solving these operator equations is proposed. A convergence of successive approximations is proved. An illustrative example is provided.

Keywords: multiply connected body, stress state, operator equation, successive approximation, iteration convergence

References:

1.   Savin, G.N. and Tul’chii, V.I. Spravochnik po kontsentratsii napryazheniy [Handbook on Stress Concentrations]. Kiev, Vishcha Shkola Publ., 1976. (In Russian).

2.   Savin G.N. Raspredelenie napryazheniy okolo otverstiy [Stress Distribution Around Holes]. Kiev, Naukova Dumka Publ., 1968, 891 p (In Russian).

3.   Rabotnov Yu.N. Mekhanika devormirovannogo tverdogo tela [Mechanics of Deformable Solids]. M, Nauka Publ., 1988, 712 p. (In Russian).

4.   Mirenkov V.E., Shutov V.A., Poluektov V.A. On the deformation of loosened plates. Izvestiya Vuzov, Stroitelstvo, 2002, no. 12, pp. 17–21. (In Russian).

5.   Sil'vestrov V.V., Zemlyanova A.Yu. Repair of a Plate with a Circular Hole by Applying a Patch. Journal of Applied Mechanics and Technical Physics, 2004, vol. 45, no. 4, pp. 605–611. DOI: 10.1023/B:JAMT.0000030342.06634.ec.

6.   Levshchanova L.L. The destruction of the coating on a plate with a cutout. Mekhanika kompozitsionnykh materialov i konstruktsii (Mechanics of Composite Materials and Structures), 2007, vol. 13, no. 2, pp. 233–238. (In Russian).

7.   Mokryakov V.V. The use of the multipole format for solving problems of two close located holes. Mechanics of Solids, 2007, vol. 42, iss. 5, pp 771–785. DOI: 10.3103/S0025654407050111.

8.   Kudryavtsev S.V. Kontsentratsiya naprryazheniy vblizi krugovykh otverstiy v gofrirovannykh stenkakh balok [Stress Concentration Near Circular Holes in Corrugated Beam Walls]. Ekaterinburg, AMB Publishing House, 2010, 156 p. (In Russian).

9.   Khan Kh. Teoriya uprugosti [Theory of Elasticity]. Moscow, Mir Publ., 1988, 344 p. (In Russian).

10. Lurie A.I. Teoriya uprugosti [Theory of Elasticity]. Moscow, Nauka Publ., 1970, 940 p. (In Russian).

11. Dmitrienko Yu.I. Tenzornoe ischislenie [Tensor Calculation]. Moscow, Vysshaya Shkola Publ., 2001, 575 p. (In Russian).

12. Mikhlin S.G. Variatsionnye metody v matematicheskoy fizike [Variational Methods in Mathematical Physics]. Moscow, Nauka Publ., 1970, 512 p. (In Russian).

13. Lyusternik L.A, Sobolev V.I. Elementy funktsionalnogo analiza [Elements of Functional Analysis]. Moscow, Nauka Publ., 1965, 520 p. (In Russian).

14. Timoshenko S., Gudier J.N. Teoriya uprugosti, Rus. transl. [Theory of Elasticity, New York, Toronto, London, McGraw-Hill Book Company, 1951]. Moscow, Nauka Publ., 1971. (In Russian).


PDF      

Article reference

Struzhanov V. V. A Method for Calculating Stresses in a Multiply Connected Elastic Body // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 1. - P. 34-42. -
DOI: 10.17804/2410-9908.2020.1.034-42. -
URL: http://eng.dream-journal.org/issues/content/article_255.html
(accessed: 11/03/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru