Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2024 Issue 3

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. M. Kulak, P. V. Pavlov, V. S. Maltsev

STUDYING THE MAGNETOELASTIC PROPERTIES OF A STEEL SHEET UNDER BENDING DEFORMATION

DOI: 10.17804/2410-9908.2024.3.073-086

The possibility of using the method of magnetoelastic demagnetization (magnetoelastic memory) of ferromagnets to control mechanical stresses of extended steel structures is considered. For this purpose, the paper studies the magnetoelastic demagnetization of a large plate sample, previously locally magnetized in the form of an N-S stripe, under pure bending deformation. Under these deformation conditions, zones of tension and compression alternate along the sheet length; consequently, a locally magnetized steel stripe experiences stresses of different magnitudes and signs along its length. It has been revealed that the highest decrease δН in the stray field strength of local remanent magnetization in the form of an N-S stripe is found in steel sheet areas at the apex of the bend, where tensile stresses do not exceed 100 MPa. In the other parts of the sheet, a periodic distribution of lower δH with a wavelength of 20 to 30 cm was revealed, this being comparable to the size of half of its zone with stresses of the same type created during bending. The obtained results of changes in δH were calibrated according to the level of stresses they experienced, and their distribution along the entire length of the bent sheet was obtained. A conclusion is drawn about the applicability of the magnetoelastic memory method to monitoring the stress state of extended steel structures in the memory mode.

Keywords: magnetoelastic memory of metal, mechanical stress, steel structure

References:

  1. Gorkunov, E.S. and Mushnikov, A.N. Magnetic methods for assessing elastic stresses in ferromagnetic steels (review). Kontrol. Diagnostika, 2020, 23 (12), 4–23. (In Russian). DOI: 10.14489/td.2020.12.pp.004-023.
  2. Kostin, V.N., Tsarkova, T.P., Nichipuruk, A.P., Loskutov, V.E., Lopatin, V.V., and Kostin, K.V. Irreversible changes in the magnetization as indicators of stress-strain state of ferromagnetic objects. Russian Journal of Nondestructive Testing, 2009, 45 (11), 786–798. DOI: 10.1134/S1061830909110059.
  3. Kuleev, V.G., Tsarkova, T.P., and Nichipuruk, A.P. Effect of tensile plastic deformations on the residual magnetization and initial permeability of low-carbon steels. Russian Journal of Nondestructive Testing, 2006, 42 (4), 261–271. DOI: 10.1134/S1061830906040073.
  4. Mushnikov, A.N. and Mitropolskaya, S.Yu. Influence of mechanical loading on the magnetic characteristics of pipe steels of different classes. Diagnostics, Resource and Mechanics of materials and structures, 2016, 4, 57–70. DOI: 10.17804/2410-9908.2016.4.057-070. Available at: http://dream-journal.org/issues/2016-4/2016-4_89.htmlv
  5. Gorkunov, E.S., Zadvorkin, S.M., Smirnov, S.V., Mitropol’skaya, S.Yu., and Vichuzhanin, D.I. Correlation between the stress-strain state parameters and magnetic characteristics of carbon steels. The Physics of Metals and Metallography, 2007, 103, 311–316. DOI: 10.1134/S0031918X07030131.
  6. Novikov, V.F., Vazhenin, Yu.I., Bakharev, M.S., Kulak, S.M., and Muratov, K.R. Diagnostika mest povyshennoy razrushaemosti truboprovoda [Diagnostics of Places of Increased Destruction of the Pipeline]. OOO Nedra–Biznes–Tsentr Publ., Moscow, 2009, 200 p. (In Russian).
  7. Kulak, S.M., Novikov, V.F., and Baranov, A.V. Control of mechanical stresses of high-pressure container walls by magnetoelastic method. IOP Conference Series: Materials Science and Engineering, 2016, 154, 012004. DOI: 10.1088/1757-899X/154/1/012004.
  8. Novikov, V.F., Ustinov, V.P. Radchenko, A.V., Muratov, K.R., Kulak, S.M., and Sorokina, S.V. On controlling stresses in a complexly loaded steel construction by magnetoelastic demagnetization. Russian Journal of Nondestructive Testing, 2016, 52, 357–361. DOI: 10.1134/S1061830916060073.
  9. Novikov, V.F., Kulak, S.M., and Andreev, V.O. On the control of the stress-strain state of steel bridge structures by the method of magnetoelastic demagnetization. Stroitelnaya Mekhanika i Raschet Soorugeniy, 2020, 4 (291), 3–7. (In Russian).
  10. Novikov, V.F., Kulak, S.M., and Parakhin, A.S. Determination of axial stresses of steel in memory mode according to the exponential law of magnetoelastic demagnetization. Zavodskaya Laboratoriya. Diagnostika Materialov, 2021, 87 (6), 54–62. DOI: 10.26896/1028-6861-2021-87-6-54-62. (In Russian).
  11. Vonsovsky, S.V. and Shur, Ya.S. Ferromagnetism [Ferromagnetism]. GITTL Publ., Moscow–Leningrad, 1948, 816 p. (In Russian).
  12. Novikov, V.F. and Bakharev, M.S. Magnitnaya diagnostika mekhanicheskikh napryazhenii v ferromagnetikakh [Magnetic Testing of Mechanical Stresses in Ferromagnets]. Vektor Buk Publ., Tyumen, 2001, 220 p. (In Russian).
  13. Novikov, V.F., Bakharev, M.S., and Sorokina, S.V. Non-destructive control of snow and wind loads in the mode of magnetoelastic memory. Stroitelnaya Mekhanika Ingenernykh Konstruksiy i Soorugeniy, 2008, 3, 51–54. (In Russian).
  14. Ponomarev, V.N., Travush, V.I., Bondarenko, V.M., and Eremin, K.I. On the need for a systematic approach to research in the field of integrated safety and prevention of accidents of buildings and structures. Predotvrashchenie Avariy Zdaniy i Sooruzheniy: Elektronnyi Zhurnal, 2013, 1–9. (In Russian). Available at: http://www.pamag.ru/pressa/necessiy_sys-appro (accessed 2013–11–25).
  15. Lipanov, I.D., Molodkin, I.A., and Khomonenko, A.D. Development and prospects of the information system for monitoring the condition of bridges. Intellektualnye Technologii na Transporte, 2021, 3 (27), 11–16. (In Russian). DOI: 10.24412/2413-2527-2021-327-11-16.
  16. Horokhov, E., Vasylev, V., Mironov, A., and Shcherbina, A. Tensely-deformed state of metallic ellipse beam. Vestnik Donbasskoy Natsionalnoy Akademii Stroitelstva i Arhitektury, 2020, 4 (104), 65–68. (In Russian).
  17. Bozhkov, V.I., Dizenko, S.I., Pedan, O.A., and Khoroshev, A.A. Test of the bridge across the Sochi river. Nauchnye Trudy KubGTU, 2017, 3, 83–89. (In Russian). Available at: https://ntk.kubstu.ru/data/mc/0040/1542.pdf
  18. Kulak, S.M., Novikov, V.F., and Maltsev, V.S. Testing mechanical stresses of bearing steel I-beams of automobile overpass using magnetic and tensometric methods. Russian Journal of Nondestructive Testing, 2022, 58, 186–194. DOI: 10.1134/S1061830922030044.
  19. Kurilenko, E.Yu., Ogorodnova, Yu.V., and Shaptala, I.V. Soprotivlenie materialov: uchebnoe posobie po tekhnicheskoi mekhanike i soprotivleniyu materialov [Strength of Materials: Study Guide on Technical Mechanics and Strength of Materials]. RIO Tyumen GASU Publ., Tyumen, 2014, 163 p. (In Russian).
  20. Mamchenko, V.O. Raschet balok na prochnost i gestkost pri priyamom i ploskom izgibe [Calculating Structural Integrity and Rigidity of Beams Under Straight Flat Bending: Teaching Aid]. NIU ITMO, St. Petersburg, 2014, 48 p. (In Russian).
  21. Vodopyanov, V.I., Savkin, A.N., and Kondratyev, O.V. Kurs soprotivleniya materialov s primerami i zadachami. Uchebnoe posobie [The Course of Resistance of Materials with Examples and Tasks. Textbook]. VolgSTU Publ., Volgograd, 2012, 136 p. (In Russian).
  22. Krapivsky, E.I. and Nekuchaev, V.O. Distantsionnaya magnitometriya gazonefteprovodov [Remote Magnetometry of Gas and Oil Pipelines: Textbook]. UGTU Publ., Ukhta, 2011, 142 р. (In Russian).
  23. Venkova, Yu.A. Monitoring tekhnicheskogo sostoyaniya neftegazoprovodov po indutsirovannoy i ostatochnoy namagnichennosti [Monitoring the Technical Condition of Oil and Gas Pipelines by Induced and Residual Magnetization: Cand. Thesis]. St. Petersburg, 2016, 149 р. (In Russian).


PDF      

Article reference

Kulak S. M., Pavlov P. V., Maltsev V. S. Studying the Magnetoelastic Properties of a Steel Sheet under Bending Deformation // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 3. - P. 73-86. -
DOI: 10.17804/2410-9908.2024.3.073-086. -
URL: http://eng.dream-journal.org/issues/2024-3/2024-3_440.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru