V. V. Chupin, D. E. Chernogubov
STUDYING SUPERCRITICAL DEFORMATIONS OF FLAT ELLIPSOIDAL PANELS OF CONSTANT THICKNESS
DOI: 10.17804/2410-9908.2022.4.081-089 An algorithm is developed for studying the stress-strain state of elastic thin-walled shell systems consisting of shells of revolution. Based on this algorithm, a computer program is written which allows one to determine the stress-strain parameters of shells in a wide range of geometric, physical, and force parameters. Supercritical deformations of flat ellipsoidal panels of constant thickness are studied.
Keywords: shell, deformation, deflection References:
- Valishvili N.V. Metody rascheta obolochek vrashcheniya na ETSVM [Methods for Calculating Shells of Revolution on a Computer]. Moscow, Mashinostroenie Publ., 1976, 278 p. (In Russian).
- Volmir A.S. Gibkie plastiny i obolochki [Flexible plates and shells]. Moscow, GITL Publ., 1956, 420 p. (In Russian).
- Vorovich I.V. and Minakova N.I. Problema ustoychivosti I chislennye metody v teorii sfericheskikh obolochek [Stability Problems and Numerical Methods in the Theory of Spherical Shells, Results of Science and Technology. Mechanics of Solid Deformable Bodies: vol. 7]. Moscow, VINITI Publ., 1974, pp. 5–86. (In Russian).
- Gavryushin S.S. Numerical modeling and analysis of the processes of nonlinear deformation of flexible shells. Izvestiya RAN, MTT, 1994, no. 1, pp. 109–119. (In Russian).
- Grigolyuk E.I. and Mamai V.I., Mekhanika deformirovaniya sfericheskikh obolochek [Deformation Mechanics for Spherical Shells]. Moscow, Izd-vo MGU Publ., 1983.
- Grigolyuk E.I., Lopanitsyn E.A. Influence of Axisymmetric Initial Imperfections of a Spherical Shell on its Critical Load. Izvestiya MGTU MAMI, 2008, vol. 2, No. 1, pp. 233–246. DOI: 10.17816/2074-0530-69752. (In Russian).
- Grigolyuk E.I., Lopanitsyn Ye.A. The axisymmetric postbuckling behaviour of shallow spherical domes. Journal of Applied Mathematics and Mechanics, 2002, vol. 66, iss. 4, pp. 605–616. DOI: 10.1016/S0021-8928(02)00079-5.
- Grigolyuk E.I., Lopanitsyn E.A. Asymmetric behavior of a sloping spherical shell under finite deflections. Doklady Physics, 2003, vol. 48, pp. 80–83. DOI: 10.1134/1.1560736.
- Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennykh obolochechnykh konstruktsiy [Statics and dynamics of thin-walled shell structures]. Moscow, Mashinostroenie Publ., 1975, 376 p. (In Russian).
- Kornishin M.S. Nelineynye zadachi teorii plastin i pologikh obolochek i metody ikh resheniya [Nonlinear problems of the theory of plates and shallow shells and methods for their solution]. Moscow, Nauka Publ., 1964, 192 p. (In Russian).
- Bazhenov V.A., Solovei N.A., Krivenko O.P., Mishchenko O.A. Modeling of nonlinear deformation and buckling of elastic inhomogeneities shells. Structural Mechanics of Engineering Constructions and Buildings, 2014, No. 5, pp. 14–33. (In Russian).
- Mushtari H.M., Galimov K.Z. Nelineynaya teoriya uprugikh obolochek [The nonlinear theory of elastic shells]. Kazan, Tatknigoizdat Publ., 1957, 431 p. (In Russian).
- Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Fundamentals of nonlinear elasticity]. Moscow, Gostekhizdat Publ., 1948, 211 p. (In Russian).
- Feodosev V.I. To the calculation of a flapping membrane. Prikladnaya Matematika i Mekhanika, 1946, No. 10 (2), pp. 295–300. (In Russian).
- Chupin V.V., Chernogubov D.E. Silnyy izgib i ustoichivost sostavnykh obolochek vrashcheniya pri osesimmetrichnom nagruzhenii s uchetom plasticheskikh deformatsiy [Tight Bending and Stability of Compound Shells of Revolution Under Axisymmetric Loading with Allowance Made for Plastic Strains: monograph]. VINITI RAN, 2018, No. 102-B2018, 285 p. (In Russian).
- Chupin V.V., Chernogubov D.E. Stability of flexible spherical panels of variable thickness under various fixing conditions. Diagnostics, Resource and Mechanics of Materials and Structures, 2015, iss. 5, pp. 45–57. DOI: 10.17804/2410-9908.2015.5.045-057. Available at: https://dream-journal.org/issues/2015-5/2015-5_36.html
- Von Kármán T., Tsien H.-S. The buckling of spherical shells by externals pressure. Journal of the Aeronautical Sciences, 1939, vol. 7, No. 2. pp. 43–50. DOI: 10.2514/8.1019.
- Mescall J. Numerical solutions of nonlinear equations for shells of revolution. AIAA Journal, 1966, vol. 4, No. 11. pp. 2041–2043. DOI: 10.2514/3.3839.
Article reference
Chupin V. V., Chernogubov D. E. Studying Supercritical Deformations of Flat Ellipsoidal Panels of Constant Thickness // Diagnostics, Resource and Mechanics of materials and structures. -
2022. - Iss. 4. - P. 81-89. - DOI: 10.17804/2410-9908.2022.4.081-089. -
URL: http://eng.dream-journal.org/issues/2022-4/2022-4_370.html (accessed: 09/12/2024).
|