

Diagnostics, Resource and Mechanics of materials and structures Issue 4, 2022

ISSN 2410-9908

Received: 27.06.2022 Revised: 25.07.2022 Accepted: 26.08.2022 DOI: 10.17804/2410-9908.2022.4.081-089

STUDYING SUPERCRITICAL DEFORMATIONS OF FLAT ELLIPSOIDAL PANELS OF CONSTANT THICKNESS

V. V. Chupin^{a)} and D. E. Chernogubov^{b)}*

B. N. Yeltsin Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russian Federation

^{a)} **b** https://orcid.org/0000-0001-9745-1593 **v.v.chupin@urfu.ru**; ^{b)} **b** https://orcid.org/0000-0002-3783-7897 **v.v.chupin@urfu.ru**

*Corresponding author. E-mail: d.e.chernogubov@urfu.ru Address for correspondence: 19 Mira St., Ekaterinburg, 620002, Russian Federation Tel.: +7 (343) 375 45 33

An algorithm is developed for studying the stress-strain state of elastic thin-walled shell systems consisting of shells of revolution. Based on this algorithm, a computer program is written which allows one to determine the stress-strain parameters of shells in a wide range of geometric, physical, and force parameters. Supercritical deformations of flat ellipsoidal panels of constant thickness are studied.

Keywords: shell, deformation, deflection.

References

1. Valishvili N.V. *Metody rascheta obolochek vrashcheniya na ETSVM* [Methods for Calculating Shells of Revolution on a Computer]. Moscow, Mashinostroenie Publ., 1976, 278 p. (In Russian).

2. Volmir A.S. *Gibkie plastiny i obolochki* [Flexible plates and shells]. Moscow, GITL Publ., 1956, 420 p. (In Russian).

3. Vorovich I.V. and Minakova N.I. *Problema ustoychivosti I chislennye metody v teorii sfericheskikh obolochek* [Stability Problems and Numerical Methods in the Theory of Spherical Shells, Results of Science and Technology. Mechanics of Solid Deformable Bodies: vol. 7]. Moscow, VINITI Publ., 1974, pp. 5–86. (In Russian).

4. Gavryushin S.S. Numerical modeling and analysis of the processes of nonlinear deformation of flexible shells. *Izvestiya RAN, MTT*, 1994, no. 1, pp. 109–119. (In Russian).

5. Grigolyuk E.I. and Mamai V.I., *Mekhanika deformirovaniya sfericheskikh obolochek* [Deformation Mechanics for Spherical Shells]. Moscow, Izd-vo MGU Publ., 1983.

6. Grigolyuk E.I., Lopanitsyn E.A. Influence of Axisymmetric Initial Imperfections of a Spherical Shell on its Critical Load. *Izvestiya MGTU MAMI*, 2008, vol. 2, No. 1, pp. 233–246. DOI: 10.17816/2074-0530-69752. (In Russian).

7. Grigolyuk E.I., Lopanitsyn Ye.A. The axisymmetric postbuckling behaviour of shallow spherical domes. *Journal of Applied Mathematics and Mechanics*, 2002, vol. 66, iss. 4, pp. 605–616. DOI: 10.1016/S0021-8928(02)00079-5.

8. Grigolyuk E.I., Lopanitsyn E.A. Asymmetric behavior of a sloping spherical shell under finite deflections. *Doklady Physics*, 2003, vol. 48, pp. 80–83. DOI: 10.1134/1.1560736.

9. Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. *Statika i dinamika tonkostennykh obolochechnykh konstruktsiy* [Statics and dynamics of thin-walled shell structures]. Moscow, Mashinostroenie Publ., 1975, 376 p. (In Russian).

10. Kornishin M.S. Nelineynye zadachi teorii plastin i pologikh obolochek i metody ikh resheniya [Nonlinear problems of the theory of plates and shallow shells and methods for their solution]. Moscow, Nauka Publ., 1964, 192 p. (In Russian).

11. Bazhenov V.A., Solovei N.A., Krivenko O.P., Mishchenko O.A. Modeling of nonlinear deformation and buckling of elastic inhomogeneities shells. *Structural Mechanics of Engineering Constructions and Buildings*, 2014, No. 5, pp. 14–33. (In Russian).

12. Mushtari H.M., Galimov K.Z. Nelineynaya teoriya uprugikh obolochek [The nonlinear theory of elastic shells]. Kazan, Tatknigoizdat Publ., 1957, 431 p. (In Russian).

13. Novozhilov V.V. Osnovy nelineynoy teorii uprugosti [Fundamentals of nonlinear elasticity]. Moscow, Gostekhizdat Publ., 1948, 211 p. (In Russian).

14. Feodosev V.I. To the calculation of a flapping membrane. *Prikladnaya Matematika i Mekhanika*, 1946, No. 10 (2), pp. 295–300. (In Russian).

15. Chupin V.V., Chernogubov D.E. Silnyy izgib i ustoichivost sostavnykh obolochek vrashcheniya pri osesimmetrichnom nagruzhenii s uchetom plasticheskikh deformatsiy [Tight Bending and Stability of Compound Shells of Revolution Under Axisymmetric Loading with Allowance Made for Plastic Strains]: monograph. VINITI RAN, 2018, No. 102-B2018, 285 p. (In Russian).

16. Chupin V.V., Chernogubov D.E. Stability of flexible spherical panels of variable thickness under various fixing conditions. *Diagnostics, Resource and Mechanics of Materials and Structures*, 2015, iss. 5, pp. 45–57. DOI: 10.17804/2410-9908.2015.5.045-057. Available at: https://dream-journal.org/issues/2015-5/2015-5_36.html

17. Von Kármán T., Tsien H.-S. The buckling of spherical shells by externals pressure. *Journal of the Aeronautical Sciences*, 1939, vol. 7, No. 2. pp. 43–50. DOI: 10.2514/8.1019.

18. Mescall J. Numerical solutions of nonlinear equations for shells of revolution. *AIAA Journal*, 1966, vol. 4, No. 11. pp. 2041–2043. DOI: 10.2514/3.3839.

Подана в журнал: 27.06.2022 УДК 539.3 DOI: 10.17804/2410-9908.2022.4.081-089

ИССЛЕДОВАНИЕ ЗАКРИТИЧЕСКИХ ДЕФОРМАЦИЙ ПОЛОГИХ ЭЛЛИПСОИДАЛЬНЫХ ПАНЕЛЕЙ ПОСТОЯННОЙ ТОЛЩИНЫ

Diagnostics, Resource and Mechanics of materials and structures Issue 4, 2022

В. В. Чупин^{а)}, Д. Е. Черногубов^{б)}*

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина», д. 19, ул. Мира, г. Екатеринбург, Российская Федерация

> ^{a)} **b** https://orcid.org/0000-0001-9745-1593 **v.v.chupin@urfu.ru**; ⁶⁾ **b** https://orcid.org/0000-0002-3783-7897 **v.v.chupin@urfu.ru**;

*Ответственный автор. Электронная почта: d.e.chernogubov@urfu.ru Адрес для переписки: ул. Мира, 19, Екатеринбург, Российская Федерация Тел.: +7 (343) 375–45–33

Разработан алгоритм исследования напряженно-деформированного состояния (НДС) упругих тонкостенных оболочечных систем, состоящих из оболочек вращения. На основе данного алгоритма написана программа для ЭВМ, позволяющая определять параметры НДС оболочек в широком диапазоне изменения геометрических, физических и силовых параметров. Исследованы закритические деформации пологих эллипсоидальных панелей постоянной толщины.

Ключевые слова: оболочка, деформация, прогиб.

1. Введение

Тонкостенные оболочечные конструкции применяются в различных областях современной техники и являются хорошо изученным разделом механики твердых деформируемых тел. В таких конструкциях под действием нагрузок могут возникать перемещения, не укладывающиеся в рамки линейной теории, что приводит к необходимости учета геометрической нелинейности [2, 12, 13]. Использование нелинейной теории позволяет лостаточной лля инженерной практики точностью определять с напряженно деформированное состояние различного вида оболочек как в случае малых, так и больших прогибов. Однако с помощью этих уравнений значения критических нагрузок оказываются значительно больше значений получаемых в результате экспериментов. Для хорошо изученных сферических оболочек теоретически полученные значения критических нагрузок почти в 4 раза больше экспериментальных [6, 8]. Причин такого несовпадения результатов несколько. Это наличие у оболочки начальных неправильностей, начальных напряжений, отличие условий нагружения и закрепления от учитываемых в математической модели, неоднородность свойств материала, несимметричность деформирования и т.п. [6]. Наибольшее количество исследований по сферическим оболочкам выполнено для жестко заделанного по контуру упругого пологого сферического купола, нагруженного равномерным поперечным давлением [1, 3, 5, 9, 10, 14, 17, 18]. Дальнейшие развитие численные расчеты гибких оболочек получили при использовании метода продолжения по параметру [4, 7, 18]. Современные тенденции развития строительной механики побуждают разрабатывать уточненные методы исследования нелинейного деформирования И устойчивости оболочек. Проектируются оболочки гладкие, ступенчато переменной толщины, с изломами, подкрепленные ребрами и накладками, ослабленные отверстиями, выемками и каналами, граненые, многослойные [11].

ISSN 2410-9908

Таким образом, развитие методов расчета оболочек и учет их начальных несовершенств является актуальным и имеет важное прикладное значение.

2. Задача исследования сильного изгиба упругой оболочки вращения

http://dream-journal.org

Будем рассматривать геометрически нелинейную задачу сильного изгиба тонких изотропных оболочек вращения, в которой не накладывается никаких ограничений на величины углов поворота нормали к исходной координатной поверхности, а относительная линейная деформация мала по сравнению с единицей. Нагрузка, действующая на оболочку, предполагается осесимметричной.

Для оболочки, испытывающей осесимметричную деформацию, уравнения равновесия в координатах деформированной поверхности имеют вид [15]:

$$\frac{d\left(\tilde{r}\tilde{N}_{s}\right)}{d\tilde{s}} - \tilde{N}_{\theta}\cos\tilde{\varphi} + \tilde{r}\frac{\tilde{Q}_{s}}{\tilde{R}_{s}} + \tilde{r}\tilde{q}_{s} = 0;$$

$$\frac{d\left(\tilde{r}\tilde{Q}_{s}\right)}{d\tilde{s}} - \tilde{r}\left(\frac{\tilde{N}_{s}}{\tilde{R}_{s}} + \frac{\tilde{N}_{\theta}}{\tilde{R}_{\theta}}\right) + \tilde{r}\tilde{q}_{\zeta} = 0;$$

$$\frac{d\left(\tilde{r}\tilde{M}_{s}\right)}{d\tilde{s}} - \tilde{M}_{\theta}\cos\tilde{\varphi} - \tilde{r}\tilde{Q}_{s} - \tilde{m}_{s} = 0.$$
(1)

Здесь N_s , Q_s , M_s – продольные, поперечные силы и изгибающие моменты в меридиональном направлении; N_{θ} , M_{θ} – усилия в окружном направлении; R_s , R_{θ} – радиусы главных кривизн в меридиональном и окружном направлениях; r – радиус параллельного круга;

s – длина дуги меридиана; q_s – касательная и q_{ζ} – нормальная составляющие распределенных нагрузок; m_s – внешний распределенный момент. Тильдами сверху отмечены величины, относящиеся к деформированному состоянию оболочечного элемента.

Геометрия оболочки вращения после деформации связана с недеформированным состоянием следующим образом:

 $\tilde{r} = r + \tilde{u}_r; \quad \tilde{z} = z + \tilde{u}_z; \quad \tilde{\varphi} = \varphi + \tilde{\theta}_s,$

где θ_s – угол поворота нормали деформированной поверхности.

Нормальное и касательное перемещения точки поверхности:

$$\tilde{u} = \tilde{u}_x \cos \tilde{\varphi} + \tilde{u}_z \sin \tilde{\varphi}; \quad \tilde{w} = \tilde{u}_x \sin \tilde{\varphi} - \tilde{u}_z \cos \tilde{\varphi}.$$

Геометрические соотношения для оболочки в предположении осесимметричной деформации:

ISSN 2410-9908

$$\frac{d\tilde{u}_{x}}{ds} = \tilde{\varepsilon}_{s}\cos\tilde{\varphi} + \cos\tilde{\varphi} - \cos\varphi;$$

$$\frac{d\tilde{u}_{z}}{ds} = \tilde{\varepsilon}_{s}\sin\tilde{\varphi} + \sin\tilde{\varphi} - \sin\varphi;$$

$$\frac{d\tilde{\theta}_{s}}{ds} = \frac{d\tilde{\varphi}}{ds} - \frac{d\varphi}{ds} = (1 + \tilde{\varepsilon}_{s})\tilde{\chi}_{s} + \frac{\tilde{\varepsilon}_{s}}{R_{s}};$$

$$\tilde{\varepsilon}_{\theta} = \frac{\tilde{u}_{x}}{r}; \quad \tilde{\chi}_{\theta} = \frac{\sin\tilde{\varphi}}{\tilde{r}} - \frac{\sin\varphi}{r};$$

$$\tilde{\chi}_{s} = \frac{1}{\tilde{R}} - \frac{1}{R_{s}}; \quad \tilde{\varepsilon}_{s} = \frac{d\tilde{u}}{ds} + \frac{\tilde{w}}{R_{s}} + \frac{1}{2}(\tilde{\theta}_{s})^{2} + \dots .$$
(2)

Здесь ε_s, ε_θ, χ_s, χ_θ – относительные деформации удлинения и изменения кривизны срединной поверхности оболочки в меридиональном и окружном направлениях.

Соотношения упругости, связывающие усилия и моменты с компонентами полной деформации с учетом гипотезы недеформируемых нормалей имеют вид

$$\begin{split} \tilde{N}_{s} &= C_{11}\tilde{\varepsilon}_{s} + C_{12}\tilde{\varepsilon}_{\theta} + K_{11}\tilde{\chi}_{s} + K_{12}\tilde{\chi}_{\theta}; \\ \tilde{N}_{\theta} &= C_{21}\tilde{\varepsilon}_{s} + C_{22}\tilde{\varepsilon}_{\theta} + K_{21}\tilde{\chi}_{s} + K_{22}\tilde{\chi}_{\theta}; \\ \tilde{S} &= C_{66}\tilde{\varepsilon}_{s\theta} + 2K_{66}\tilde{\chi}_{s\theta}; \\ \tilde{M}_{s} &= K_{11}\tilde{\varepsilon}_{s} + K_{12}\tilde{\varepsilon}_{\theta} + D_{11}\tilde{\chi}_{s} + D_{12}\tilde{\chi}_{\theta}; \\ \tilde{M}_{\theta} &= K_{21}\tilde{\varepsilon}_{s} + K_{22}\tilde{\varepsilon}_{\theta} + D_{21}\tilde{\chi}_{s} + D_{22}\tilde{\chi}_{\theta}; \\ \tilde{H} &= K_{66}\tilde{\varepsilon}_{s\theta} + D_{66}\tilde{\chi}_{s\theta}. \end{split}$$
(3)

Здесь N_s , N_{θ} и S – мембранные усилия; M_s , M_{θ} и H – изгибающие и крутящий моменты; $\varepsilon_{s\theta}$ – относительная деформация сдвига; $\chi_{s\theta}$ – кручение координатной поверхности; C_{mp} , K_{mp} , D_{mp} (m, p = 1, 2) – коэффициенты упругости.

Для изотропных оболочек

$$C_{11} = C_{22} = \frac{Eh}{1 - v^2}; \quad C_{12} = vC_{11}; \quad C_{66} = \frac{Eh}{2(1 + v)};$$
$$D_{11} = D_{22} = \frac{Eh^3}{12(1 - v^2)}; \quad D_{12} = vD_{11}; \quad D_{66} = \frac{Eh^3}{24(1 + v)};$$
$$K_{11} = K_{12} = K_{22} = K_{66} = 0,$$

где *Е* – модуль упругости; v – коэффициент Пуассона; *h* – толщина оболочки.

Для получения разрешающей системы уравнений уравнения (1), (2) и (3) необходимо дополнить граничными условиями.

Например, для жестко защемленного левого края и свободного правого:

$$\tilde{u}_x = \tilde{u}_z = \tilde{\theta}_s = 0$$
, при $s = s_0$;
 $\tilde{N}_x = \tilde{N}_z = \tilde{M}_s = 0$, при $s = s_N$.

Для решения задачи использовался метод Ньютона–Канторовича, сводящий нелинейную краевую задачу к итерационной последовательности линейных краевых задач. При решении линейных краевых задач применялся метод сведения их к ряду задач Коши, которые интегрировались численно, методом Рунге–Кутта. Для обеспечения устойчивости решения жестких задач Коши применен метод дискретной ортогонализации С. К. Годунова.

3. Исследование закритических деформаций пологих эллипсоидальных панелей постоянной толщины

Исследовано напряженно-деформированное состояние пологих эллипсоидальных панелей постоянной толщины с защемлением на внешнем контуре под действием равномерного внешнего давления (рис. 1).

Рис. 1. Расчетная схема оболочки

Оболочки (рис. 2) имеют характеристики: модуль упругости E = 200 ГПа; коэффициент Пуассона v = 0,3; толщина h = 1 мм; радиус опорного контура c = 100 мм. Образующие оболочек очерчены в плоскости z0x по эллипсам, радиусы кривизны которых в полюсе (точка B') равны радиусу кривизны сферической панели [16] $R_0 = 516,5$ мм с параметром

пологости [7] $b = \sqrt[4]{12(1-v^2)} \frac{c}{\sqrt{Rh}} = 8.$

Рис. 2. Схемы сферической и эллипсоидальных оболочек

Параметры оболочек представлены в табл. 1.

Таблица 1

№ п.п.	Оболочка	Радиусы кривизны, мм			Полуоси эллипса	
		т. <i>В</i> и <i>В'</i> (в полюсе)	т. <i>С</i> (на опоре)	Δ , mm	<i>a</i> , MM	<i>b</i> , мм
1	Сфера	516,5	516,5	0	516,5	516,5
2	Эллипсоид		383,6	0,5	214,48	89,07

Параметры оболочек

ISSN 2410-9908

3		285,16	1,0	165,64	53,12
4		211,97	1,5	143,56	39,90
5		157,43	2,0	130,79	33,12

На рис. 3 приведены кривые деформирования оболочек в координатах: внешняя нагрузка – прогиб полюса при изменении высоты H, где $\Delta = 0...2$ мм. Номера кривых соответствуют номерам табл. 1.

Кривые 1, 2 и 3 имеют петли, а на кривых 4 и 5 петли пропадают и остаются только четыре предельные точки для кривой 4: *a*, *б*, *в*, *г*.

Для определения момента исчезновения петли и перехода к кривой с четырьмя предельными точками получены две кривые, представленные на рис. 4. Здесь, на кривой 2, точка

б – предельная. Параметры оболочек, соответствующие этим кривым, приведены в табл. 2.

Рис. 3. Кривые деформирования оболочек: $1 - сфера, \Delta = 0; 2 - эллипсоид, \Delta = 0,5$ мм; $3 - эллипсоид, \Delta = 1$ мм; $4 - эллипсоид, \Delta = 1,5$ мм; $5 - эллипсоид, \Delta = 2$ мм;

ISSN 2410-9908

Рис. 4. Кривые деформирования оболочек: I – эллипсоид, Δ = 1,26 мм; 2 – эллипсоид, Δ = 1,27 мм; a, δ , e – предельные точки

Таблица 2

		Π	Іараметры оболо	чек		
№ п.п.	Оболочка	Радиусы кривизны, мм			Полуоси эллипса	
		т. В'	т. С	Δ, мм	а, мм	<i>b</i> , мм
		(в полюсе)	(на опоре)			
1	эллипсоид	516,5	244,42	1,26	152,46	45,00
2			242,97	1,27	152,04	44,75

Рис. 5. Кривые прогибов: 1 – точка а; 2 – точка б; 3 – точка в

ISSN 2410-9908

На рис. 5 представлены кривые прогибов оболочки с $\Delta = 1,27$ мм для точек *a*, *б*, *в* (рис. 4). При переходе от точки а к точке б происходит прощелкивание кольцевого пояса вблизи центра и около опорного контура.

Выполненные расчеты по разработанной авторами программе показали эффективность использованных алгоритмов.

Литература

Валишвили Н. В. Методы расчета оболочек вращения на ЭЦВМ. – М. : 1. Машиностроение, 1976. – 278 с.

2. Вольмир А. С. Гибкие пластины и оболочки. – М. : Гостехиздат, 1956. – 420 с.

3. Ворович И. И., Минакова Н. И. Проблема устойчивости и численные методы в теории сферических оболочек. - М. : ВИНИТИ, 1973. - С. 5-86.

Гаврюшин С. С. Численное моделирование и анализ процессов нелинейного дефор-4. мирования гибких оболочек // Известия РАН, МТТ. – 1994. – № 1. – С. 109–119.

Григолюк Э. И., Мамай В. И. Механика деформирования сферических оболочек. -5. М.: Изд-во МГУ, 1983. – 114 с.

6. Григолюк Э. И., Лопаницын Е. А. Влияние осесимметричных начальных неправильностей сферической оболочки на ее критическую нагрузку // Известия МГТУ МАМИ. -2008. – № 1 (5). – C. 233–246.

Grigolyuk E. I., Lopanitsyn Ye. A. The axisymmetric postbuckling behaviour of shallow 7. spherical domes // Journal of Applied Mathematics and Mechanics. - 2002. - Vol. 66, iss. 4. -P. 605-616. - DOI: 10.1016/S0021-8928(02)00079-5.

8. Grigolyuk E. I., Lopanitsyn E. A. Asymmetric behavior of a sloping spherical shell under fi-nite deflections // Doklady Physics. - 2003. - Vol. 48. - P. 80-83. - DOI: 10.1134/1.1560736.

Статика и динамика тонкостенных оболочечных конструкций / А. В. Кармишин, 9. В. А. Ляскович, В. И. Мяченков, А. Н. Фролов. – М. : Машиностроение, 1975. – 376 с.

Корнишин М. С. Нелинейные задачи теории пластин и пологих оболочек и методы их 10. решения. – М. : Наука, 1964. – 192 с.

11. Моделирование нелинейного деформирования и потери устойчивости упругих неоднородных оболочек / В. А. Баженов, Н. А. Соловей, О. П. Кривенко, О. А. Мищенко // Строительная механика инженерных конструкций и сооружений. – 2014. – № 5. – С. 14–33.

12. Муштари Х. М., Галимов К. З. Нелинейная теория упругих оболочек. - Казань : Таткнигоиздат, 1957. – 431 с.

Новожилов В. В. Основы нелинейной теории упругости. – М. : Гостехиздат, 1948. – 13. 211 c.

14. Феодосьев В. И. К расчету хлопающей мембраны // Прикладная математика и механика. - 1946. - Т. 10, № 2. - С. 295-300.

Чупин В. В., Черногубов Д. Е. Сильный изгиб и устойчивость составных оболочек 15. вращения при осе-симметричном нагружении с учетом пластических деформаций : монография / деп. в ВИНИТИ РАН 10.09.2018. - № 102-В2018. - 285 с.

Chupin V. V., Chernogubov D. E. Stability of flexible spherical panels of variable thickness 16. under various fixing conditions // Diagnostics, Resource and Mechanics of Materials and Structures. -2015. - Iss. 5. - P. 45-57. - DOI: 10.17804/2410-9908.2015.5.045-057. URL: https://dreamjournal.org/issues/2015-5/2015-5 36.html

17. Kármán T., Tsien H. The buckling of spherical shells by externals pressure // Journal of the Aeronautical Sciences. - 1939. - Vol. 7, No. 2. - P. 43-50. - DOI: 10.2514/8.1019.

Mescall J. Numerical solutions of nonlinear equations for shells of revolution // AIAA 18. Journal. - 1966. - Vol. 4, No. 11. - P. 2041-2043. - DOI: 10.2514/3.3839.