Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2022 Issue 3

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

L. S. Goruleva, E. Yu. Prosviryakov

UNIDIRECTIONAL STEADY-STATE INHOMOGENEOUS COUETTE FLOW WITH A QUADRATIC VELOCITY PROFILE ALONG A HORIZONTAL COORDINATE

DOI: 10.17804/2410-9908.2022.3.047-060

The paper presents an exact solution to the boundary value problem describing the steady-state unidirectional flow of a viscous incompressible fluid. The fluid moves in an infinite horizontal strip (infinite fluid layer). The fulfillment of the no-slip condition is postulated at the lower boundary of the viscous fluid layer. At the upper boundary, which is assumed to be rigid, non-uniform velocity distribution is specified. The deformation of the free boundary is neglected due to the use of the rigid-lid boundary condition. The exact solution to the equations of the hydrodynamics of incompressible fluids automatically satisfies the continuity equation (the incompressibility equation). The velocity function is harmonic in this case. The simplest exact solution satisfying the Laplace equation is constructed, which takes into account the features of the velocity field along the transverse (vertical) coordinate and one of the longitudinal (horizontal) coordinates. The paper analyzes the topological properties of the velocity field, the tangential stress field, the vorticity vector, specific kinetic energy, and specific helicity.

Keywords: Couette flow, inhomogeneous flow, exact solution, counterflows, shear stresses, specific kinetic energy, specific helicity

References:

  1. Couette M. Etudes sur le frottement des liquids. Ann. Chim. Phys., 1890, vol. 21, pp. 433–510.
  2. Ershkov S.V., Prosviryakov E.Yu, Burmasheva N.V., and Christianto Victor. Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 2021, vol. 53, No. 4, 044501. DOI: 10.1088/1873-7005/ac10f0.
  3. Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-stokes equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, No. 5, pp. 642–662. DOI: 10.1134/S0040579509050066.
  4. Drazin P.G., Riley N. The Navier–Stokes Equations: A classification of flows and exact solutions, Cambridge, Cambridge Univ. Press Publ., 2006, 196 p.
  5. Polyanin A.D., Zaitsev V.F. Handbook of nonlinear partial differential equations. Boca Raton, Chapman & Hall / CRC Press Publ., 2004, 840 p.
  6. Whitham G.B. The Navier–Stokes equations of motion, ed. L. Rosenhead, Oxford, Clarendon. Laminar Boundary Layers Publ., 1963, pp. 114–162.
  7. Wang C.Y. Exact solutions of the steady-state Navier-Stokes equations. Annu. Rev. Fluid Mech., 1991, vol. 23, pp. 159–177. DOI: 10.1146/ANNUREV.FL.23.010191.001111.
  8. Wang C.Y. Exact solutions of the unsteady Navier-Stokes equations. Appl. Mech. Rev. 1989, vol. 42, pp. 269–282. DOI: 10.1115/1.3152400.
  9. Pukhnachev V.V. Symmetries in the Navier-Stokes equations. Uspekhi Mekhaniki, 2006, No. 1, pp. 6–76. (In Russian).
  10. Taylor G.I. Stability of a viscous fluid contained between two rotating cylinders. J. Phil. Trans. Royal Society A., 1923, vol. 223, No. 605615, pp. 289–343. DOI: 10.1098/RSTA.1923.0008.
  11. Zhilenko D.Y., Krivonosova O.E. Transitions to chaos in the spherical Couette flow due to periodic variations in the rotation velocity of one of the boundaries. Fluid Dynamics, 2013, vol. 48, No. 4, pp. 452–460. DOI: 10.1134/S0015462813040042.
  12. Zhilenko D., Krivonosova O., Gritsevich M. Wave number selection in the presence of noise: Experimental results. Chaos, 2018, vol. 28, 053110. DOI: 10.1063/1.5011349.
  13. Pukhnachev V.V., Pukhnacheva T.P. Couette problem for Kelvin-Voigt medium. Vestnik NGU. Ser. Matematika, Mekhanika, Informatika, 2010, vol. 10, No. 3, pp. 94–109. (In Russian).
  14. Zhuk V.I., Protsenko I.G. Asymptotic model for the evolution of perturbations in the plane Couette-Poiseuille flow. Doklady Mathematics, 2006, vol. 74, No. 3, pp. 896–900. DOI: 10.1134/S1064562406060287.
  15. Gavrilenko S.L., Shil'ko S.V., Vasin R.A. Characteristics of a viscoplastic material in the Couette flow. Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, No. 3, pp. 439–444. DOI: 10.1023/A:1015378622918.
  16. Shalybkov D.A. Hydrodynamic and hydromagnetic stability of the Couette flow. Physics-Uspekhi, 2009, vol. 52, No. 9, pp. 915–935. DOI: 10.3367/UFNe.0179.200909d.0971.
  17. Babkin V.A. Plane turbulent Couette flow. Journal of Engineering Physics and Thermophysics, 2003, vol. 76, No. 6, pp. 1251–1254. DOI: 10.1023/B:JOEP.0000012026.19646.C6.
  18. Abramyan A.K., Mirantsev L.V., Kuchmin A.Yu. Modeling of processes at Couette simple fluid flow in flat nano-scopic canal. Matematicheskoe Modelirovanie, 2012, vol. 24, No. 4, pp. 3–21. (In Russian).
  19. Belyayeva N.A., Kuznetsov K.P. Analysis of a nonlinear dynamic model of the Couette flow for structured liquid in a flat gap. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2012, No. 2 (27), pp. 85–92. (In Russian).
  20. Aristov S.N., Prosviryakov E.Y. Large-scale flows of viscous incompressible vortical fluid. Russian Aeronautics, 2015, vol. 58, No. 4, pp. 413–418. DOI: 10.3103/S1068799815040091.
  21. Aristov S.N., Prosviryakov E.Y. Inhomogeneous Couette flow. Nelineynaya Dinamika, 2014, vol. 10, No. 2, pp. 177–182. DOI: 10.20537/nd1402004. (In Russian).
  22. Privalova V.V., Prosviryakov E.Yu. Vortex flows of a viscous incompressible fluid at constant vertical velocity under perfect slip conditions. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 2, pp. 57–70. DOI: 10.17804/2410-9908.2019.2.057-070. (In Russian).
  23. Aristov S.N., Prosviryakov E.Y. Unsteady layered vortical fluid flows. Fluid Dynamics, 2016, vol. 51, No. 2, pp. 148–154. DOI: 10.1134/S0015462816020034.
  24. Zubarev N.M., Prosviryakov E.Yu. Exact solutions for layered three-dimensional nonstationary isobaric flows of a viscous incompressible fluid. Journal of Applied Mechanics and Technical Physics, 2019, vol. 60, No. 6, pp. 1031–1037. DOI: 10.1134/S0021894419060075.
  25. Prosviryakov E.Yu. Exact solutions of three-dimensional potential and vortical Couette flows of a viscous incompressible fluid. Bulletin of the National Research Nuclear University MIFI, 2015, vol. 4, No. 6, pp. 501–506. DOI: 10.1134/S2304487X15060127. (In Russian).
  26. Privalova V.V., Prosviryakov E.Yu., Simonov M.A. Nonlinear gradient flow of a vertical vortex fluid in a thin layer. Nelineynaya Dinamika, 2019, vol. 15, No. 3, pp. 271–283. DOI: 10.20537/nd190306. (In Russian).
  27. Aristov S.N., Prosviryakov E.Y. Nonuniform convective Couette flow. Fluid Dynamics, 2016, vol. 51, No. 5, pp. 581–587. DOI: 10.7868/S0568528116050030. (In Russian).
  28. Burmasheva N.V., Prosviryakov E.Yu. A class of exact solutions for two-dimensional equations of geophysical hydrodynamics with two Coriolis parameters. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 32, pp. 33–48. DOI: 10.26516/1997-7670.2020.32.33. (In Russian).
  29. Burmasheva N.V., Prosviryakov E.Yu. Exact solutions to the Navier–Stokes equations describing stratified fluid flows. Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, No. 3, pp. 491–507. DOI: 10.14498/vsgtu1860.
  30. Burmasheva N.V., Prosviryakov E.Yu. Exact Solutions of the Navier–stokes Equations for Describing an Isobaric One-Directional Vertical Vortex Flow of a Fluid. Diagnostics, Resource and Mechanics of materials and structures, 2021, iss. 2, pp. 30–51. Available at: https://dream-journal.org/DREAM_Issue_2_2021_Burmasheva_N.V._et_al._030_051.pdf (accessed 04.05.2022).
  31. Polyanin A.D., Zhurov A.I. Metody razdeleniya peremennykh i tochnye resheniya nelineynykh uravneniy matematicheskoy fiziki [Methods of separation of variables and exact solutions of nonlinear equations of mathematical physics]. Moscow, IPMekh RAN Publ., 2020, 384 p. (In Russian).
  32. Polyanin A.D. Exact generalized separable solutions of the Navier-Stokes equations. Doklady RAN, 2001, vol. 380, No. 4, pp. 491–496. (In Russian).
  33. Polyanin A.D. Methods of functional separation of variables and their application in mathematical physics. Matematicheskoe Modelirovanie i Chislennye Metody, 2019, No. 1, pp. 65–97. DOI: 10.18698/2309-3684-2019-1-6597. (In Russian).
  34. Polyanin A.D., Aristov S.N. Systems of hydrodynamic type equations: exact solutions, transformations, and nonlinear stability. Doklady Physics, 2009, vol. 54, No. 9, pp. 429–434. DOI: 10.1134/S1028335809090079.
  35. Polyanin A.D., Zhurov A.I. Functional separable solutions of two classes of nonlinear mathematical physics equations. Doklady Mathematics, 2019, vol. 99, No. 3. pp. 321–324. DOI: 10.1134/s1064562419030128.
  36. Aristov S.N., Polyanin A.D. New classes of exact solutions and some transformations of the Navier–Stokes equations. Russian J. Math. Physics, 2010, vol. 17, No. 1, pp. 1–18. DOI:  10.1134/S1061920810010012.
  37. Meleshko S.V. A particular class of partially invariant solutions of the Navier–Stokes equations. Nonlinear Dynamics, 2004, vol. 36, No. 1, pp. 47–68. DOI: 10.1023/B:NODY.0000034646.18621.73.


PDF      

Article reference

Goruleva L. S., Prosviryakov E. Yu. Unidirectional Steady-State Inhomogeneous Couette Flow with a Quadratic Velocity Profile Along a Horizontal Coordinate // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 3. - P. 47-60. -
DOI: 10.17804/2410-9908.2022.3.047-060. -
URL: http://eng.dream-journal.org/issues/2022-3/2022-3_367.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru