S. Yu. Lebedev, V. N. Syzrantsev
CALCULATING THE PROBABILITY OF THE FAILURE-FREE OPERATION OF SPUR GEAR TRANSMISSIONS
DOI: 10.17804/2410-9908.2022.3.013-024 The article presents an improved method for calculating the probability of failure-free operation of case-hardened spur gear transmissions. The existing methods for calculating the probability of failure-free operation of gear transmissions are analyzed. The failure tree for a case-hardened spur gear transmission is presented. The probability of failure-free operation of case-hardened cylindrical gear transmissions is presented as the product of the probabilities of failure-free operation of the gear and the wheel according to the following criteria (failure types): contact endurance (pitting), bending endurance (tooth breakage), and tooth interior fatigue fracture (deep contact chipping). An algorithm has been developed for calculating the probability of failure-free operation of case-hardened spur gear transmissions. To restore the torque distribution density function in the proposed method, nonparametric statistics methods are implemented. In the calculation of contact stresses, the skew angle is taken into account, which is the sum of two angles: the skew angle due to deformations of the transmission elements and the housing; the total angle of technological misalignment of wheel tooth surfaces, caused by errors in the manufacture of the teeth and mounting errors during the assembly of the transmission. An example of a test calculation of the probability of failure-free operation of a case-hardened spur gear transmission according to the presented method is given. Based on the work performed, conclusions are formulated.
Keywords: probability of failure-free operation, nonparametric statistics methods, spur gear,
machine reliability References:
- Reshchikov V.F. Trenie i iznos tyazhelonagruzhennykh peredach [Friction and wear in heavy-loaded transmissions]. Moscow, Mashinostroenie Publ., 1975, 232 p. (In Russian).
- Kogaev V.P., Drozdov Yu.N. Prochnost' i iznosostojkost' detaley mashin [Strength and wear resistance of machine elements: a textbook for engineering high schools]. Moscow, Vysshaya Shkola Publ., 1991, 318 p. (In Russian).
- ISO 6336. Calculation of load capacity of spur and helical gears. International Organization for Standardization (ISO), 2007.
- GOST 21354-87. Cylindrical evolvent gears of external engagement. Strength calculation. Moscow, Izd-vo standartov Publ., 1988, 125 p. (In Russian).
- Sharma Vikas, Parey Anand. Gearbox fault diagnosis using RMS based probability density function and entropy measures for fluctuating speed conditions. Structural Health Monitoring, 2016, pp. 1–14. DOI: 10.1177/1475921716679802.
- Sun YuanTao, Liu Chao, Zhang Qing, Qin XianRong. Multiple Failure Modes Reliability Modeling and Analysis in Crack Growth Life Based on JC Method. Mathematical Problems in Engineering, 2017, pp. 1–5. DOI: 10.1155/2017/2068620.
- Prushak V.Ya., Chernous D.A., Volchek O.M. Influence of dynamic load on gear transmission durability of heavy-duty roadheading machines. Proceedings of the National Academy of Sciences of Belarus. Рhysical-technical series. Vescì Nacyânalʹnaj akadèmìì navuk Belarusì. Seryâ fìzìka-tèhnìčnyh navuk, 2018, vol. 63, No. 2, pp. 192–200. DOI: 10.29235/1561-8358-2018-63-2-192-200. (In Russian).
- Reshetov D.N., Ivanov A.S., Fadeev V.Z. Nadezhnost' mashin [Machine Reliability: Manual for Higher Education Institutions]. Moscow, Vysshaya Shkola Publ., 1988, 238 p. (In Russian).
- Wu Ying, Xie Li-Yang, Wang De-Cheng, Gao Ji-Zhang. Reliability Analysis of Shiplift Gear Based on System-level Load-Strength Interference Model. Advanced Materials Research, 2010, vol. 118–120, pp. 354–358. DOI: 10.4028/www.scientific.net/AMR.118-120.354.
- Ognjanović Milosav, Milutinović Miroslav S. Design for Reliability Based Methodology for Automotive Gearbox Load Capacity Identification. Strojniški vestnik–Journal of Mechanical Engineering, 2013, vol. 59 (5), pp. 311–322. DOI: 10.5545/sv-jme.2012.769.
- Rudenko S.P. & Val'ko A. L. Features of analysis of gear wheels of transmissions on deep back-to-back endurance. Vestnik Mashinostroeniya, 2015, No. 11, pp. 5–11. ISSN 0042-4633. (In Russian).
- Zhu Caichao, Chen Shuang, Liu Hua iju, Huang Huaqing, Li Guangfu, Ma Fei. Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum. Journal of Mechanical Science and Technology, 2014, vol. 28 (6), pp. 2033–2040. DOI: 10.1007/s12206-014-0403-0.
- Syzrantsev V.N., Antonov M.D. An algorithm for determining the parameters of the distribution density function with the application of nonparametric statistics methods. 14th International Conference on MRDMS-2020, Ekaterinburg: AIP Conference Proceedings, 2020, pp. 40–42. DOI: 10.1063/5.0037016.
- Syzrantsev V.N., Nevelev Ya.P., Golofast S.L. Raschet prochnostnoy nadezhnosti izdeliy na osnove metodov neparametricheskoy statistiki [Calculation of strength reliability of products based on methods of nonparametric statistics]. Novosibirsk, Nauka Publ., 2008, 216 p. (In Russian).
- Golofast S.L. Diagnostika rabotosposobnosti peredach Novikova datchikami deformatsii integral'nogo tipa [Serviceability diagnostics of Wildhaber-Novikov gearings by integral strain gauges]. Novosibirsk, Nauka Publ., 2004. 164 p. (In Russian).
- Brecher Ch., Löpenhaus Ch., Brimmers J., Henser J. Influence of the Defect Size on the Tooth Root Load Carrying Capacity. GEARTECHNOLOGY, November/December 2017, pp. 92–100. Available at: https://www.geartechnology.com/issues/1117x/defect-size.pdf
- Lebedev S.Yu. Analysis of methods for calculating tooth interior fatigue fracture, OMSK SCIENTIFIC BULLETIN, 2022, No. 2 (182). (In Russian).
- Reduktory energeticheskikh mashin: spravochnik [Yu.L. Derzhavets, ed., Gearboxes of power machines: reference book]. St. Petersburg, Mashinostroenie Publ., 1985, 232 p. (In Russian).
- Korotkin V.I., Kolosova E.M., Onishkov N.P. Forecasting of the contact endurance of hardened teeth and the load capacity of involute gear transmissions based on the limit state criterion of the material. Vestnik Mashinostroeniya, 2021, no. 12. pp. 35–37. DOI: 10.36652/0042-4633-2021-12-35-37. (In Russian).
- Al Baydu, Patel R., Langlois P. Comparison of Tooth Interior Fatigue Fracture Load Capacity to Standardized Gear Failure Modes. Gear solutions, 2017, pp. 47–57.
- Houyi B., Caichao Z., Ye Zh., Xiaojin Ch., Houbin F., Wei Ye. Study on Tooth Interior Fatigue Fracture Failure of Wind Turbine Gears. Metals, 2020, No. 10 (11), pp. 1497 (1–18). DOI: 10.3390/met10111497.
- Lebedev S.Yu., Syzrantsev V.N. Probability of no-failure operation of cylindrical gears: tooth interior fatigue fracture. Bulletin of the South Ural State University. Ser. Mechanical Engineering Industry, 2022, vol. 22, No. 2, pp. 20–32. DOI: 10.14529/engin220202. (In Russian).
- Syzrantseva K.V. Raschet prochnostnoi nadezhnosti detalei mashin pri sluchainom kharaktere vneshnikh nagruzok [Calculation of strength reliability of machine parts at random nature of the external loads]. Tyumen, Tyumen State Oil and Gas University Publ., 2011.
Article reference
Lebedev S. Yu., Syzrantsev V. N. Calculating the Probability of the Failure-Free Operation of Spur Gear Transmissions // Diagnostics, Resource and Mechanics of materials and structures. -
2022. - Iss. 3. - P. 13-24. - DOI: 10.17804/2410-9908.2022.3.013-024. -
URL: http://eng.dream-journal.org/issues/2022-3/2022-3_361.html (accessed: 12/21/2024).
|