D. I. Vichuzhanin, S. V. Smirnov, N. B. Pugacheva, A. V. Nesterenko, P. A. Polyakov
THE EFFECT OF THE STRESS STATE ON THE DEFORMABILITY OF AN ALUMINUM MATRIX COMPOSITE WITH 10 VOL% SiC PARTICLE FILLER
DOI: 10.17804/2410-9908.2024.4.006-023 The effect of the stress state on the deformability of an aluminum matrix composite with 10 vol% of SiC particles is studied by using the damage criterion. Backward extrusion of a standard cup-shaped part is used as an example. The process is simulated by the finite element method to evaluate the stress-strain state and damage. It has been found that, in order to make a high-quality product, it is necessary to carry out extrusion under all-round compression at near-solidus temperatures. A laboratory die was designed and manufactured for the experimental verification of the simulation results. The die is peculiar in that the value of compressive stresses can be controlled during deformation. The extrusion process yields a defect-free product. It has been revealed that heating to near-solidus temperature breaks the initial cellular structure of the composite under external loading.
Acknowledgment: The study was carried out in accordance with the state assignment for the Institute of Engi-neering Science UB RAS, theme No. 124020700063-3. The equipment of the Plastometriya shared research facilities (IES UB RAS) was used in the tests. The simulations were performed with the application of the software installed at the Laboratory of Structural Methods of Analysis and Prop-erties of Materials and Nanomaterials of the shared research facilities affiliated to the Ural Federal University. Keywords: damage, fracture locus, aluminum matrix composite, silicon carbide References:
- Pramanik, A. and Basak, A.K. Fracture and fatigue life of Al-based MMCs machined at different conditions. Engineering Fracture Mechanics, 2018, 191, 33–45. DOI: 10.1016/j.engfracmech.2018.01.013.
- Huang, S.-J. and Ali, A.N. Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Materials Science and Engineering: A, 2018, 711, 670–682. DOI: 10.1016/j.msea.2017.11.020.
- Kurganova, Yu.A., Kolmakov, A.G., Chen, I., and Kurganov, S.V. Study of mechanical characteristics of advanced aluminum-matrix composites reinforced with SiC and Al2O3. Inorganic Materials: Applied Research, 2022, 13, 157–160. DOI: 10.1134/S2075113322010245.
- Gladkovskii, S.V., Petrova, S.V., Cherkasova, T.S., and Patselov, A.M. Structure, physical and mechanical properties of aluminum matrix composites reinforced with carbide particles. Metal Science and Heat Treatment, 2023, 65, 54–61. DOI: 10.1007/s11041-023-00891-5.
- Munasir, N., Triwikantoro, T., Zainuri, M., Bäßler, R., and Darminto, D. Corrosion polarization behavior of Al–SiO2 composites in 1M and related microstructural analysis. International Journal of Engineering, 2019, 32 (7), 982–990. DOI: 10.5829/ije.2019.32.07a.11.
- Dixit, S., Mahata, A., Mahapatra, D.R., Kailas, S.V., and Chattopadhyay, K. Multi-layer graphene reinforced aluminum – manufacturing of high strength composite by friction stir alloying. Composites Part B: Engineering, 2018, 136, 63–71. DOI: 10.1016/j.compositesb.2017.10.028.
- Hu, Z., Chen, F., Xu, J., Nian, Q., Lin, D., Chen, C., Zhu, X., Chen, Y., and Zhang, M. 3D printing graphene-aluminum nanocomposites. Journal of Alloys and Compounds, 2018, 746, 269–276. DOI: 10.1016/j.jallcom.2018.02.272.
- Ogawa, F. and Masuda, C. Fabrication and the mechanical and physical properties of nanocarbon-reinforced light metal matrix composites: a review and future directions. Materials Science and Engineering: A, 2021, 820, 141542. DOI: 10.1016/j.msea.2021.141542.
- Ma, J., Kang, J., and Huang, T. Novel application of ultrasonic cavitation for fabrication of TiN/Al composites. Journal of Alloys and Compounds, 2016, 661, 176–181. DOI: 10.1016/j.jallcom.2015.11.159.
- Tan, Z., Li, Z., Fan, G., Kai, X., Ji, G., Zhang, L., and Zhang, D. Diamond/aluminum composites processed by vacuum hot pressing: microstructure characteristics and thermal properties. Diamond and Related Materials, 2013, 31, 1–5. DOI: 10.1016/j.diamond.2012.10.008.
- Bharath, V., Nagaral, M., Auradi, V., and Kori, S.A. Preparation of 6061 Al–Al2O3 MMC’s by stir casting evaluation of mechanical and wear properties. Procedia Materials, 2014, 6, 1658. DOI: 10.1016/j.mspro.2014.07.151.
- Yolshina, L.A., Kvashnichev, A.G., Vichuzhanin, D.I., and Smirnova, E.O. Mechanical and thermal properties of aluminum matrix composites reinforced by in situ Al2O3 nanoparticles fabricated via direct chemical reaction in molten salts. Applied Sciences, 2022, 12, 8907. DOI: 10.3390/app12178907.
- Kumar, D., Angra, S., and Singh, S. Mechanical properties and wear behavior of stir cast aluminum metal matrix composite: a review. International Journal of Engineering, 2022, 35 (4), 794–801. DOI: 10.5829/ije.2022.35.04a.19.
- Najimi, A.A. and Shahverdi, H.R. Microstructure and mechanical characterization of Al6061-CNT nanocomposites fabricated by spark plasma sintering. Materials Characterization, 2017, 133, 44–53. DOI: 10.1016/j.matchar.2017.09.028.
- Chen, B., Shen, J., Ye, X., Jia, L., Li, S., Umeda, J., Takahashi, M., and Kondoh, K. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Materialia, 2017, 140, 317–325. DOI: 10.1016/j.actamat.2017.08.048.
- Gao, X., Yue, H., Guo, E., Zhang, H., Lin, X., Yao, L., and Wang, B. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Materials & Design, 2016, 94, 54–60. DOI: 10.1016/j.matdes.2016.01.034.
- Çiçek, O., Uslu Tecimer, H., Tan, S.O., Tecimer, H., Orak, İ., and Altındal Ş. Synthesis and characterization of pure and graphene (Gr)-doped organic/polymer nanocomposites to investigate the electrical and photoconductivity properties of Au/n-GaAs structures. Composites Part B: Engineering, 2017, 113, 14–23. DOI: 10.1016/j.compositesb.2017.01.012.
- Liu, J., Zhang, Z., Lv, Y., Yan, J., Yun, J., Zhao, W., Kou, L., and Zhai, C. Synthesis and characterization of ZnO NWAs/graphene composites for enhanced optical and field emission performances. Composites Part B: Engineering, 2016, 99, 336–372. DOI: 10.1016/j.compositesb.2016.05.036.
- Bozkurt, Y. and Boumerzong, Z. Tool material effect on the friction stir butt welding of AA2124-T4 alloy matrix MMC. Journal of Materials Research and Technology, 2018, 7 (1), 29–38. DOI: 10.1016/j.jmrt.2017.04.001.
- Zhang, X., Chen, Y., and Hu, J. Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 2018, 97, 22–34. DOI: 10.1016/J.PAEROSCI.2018.01.001.
- Yusof, N.S.B., Sapuan, S.M., Sultan, M.T.H., Jawaid, M., and Maleque, M.A. Design and materials development of automotive crash box: a review. Ciência & Tecnologia dos Materiais, 2017, 29 (3), 129–144. DOI: 10.1016/j.ctmat.2017.09.003.
- Hamza, M. and Mondal, S. Effect of reinforcement with ceramic microparticles on structure and properties of composites with an aluminum matrix. Metal Science and Heat Treatment, 2022, 64 (3), 163–166. DOI: 10.1007/s11041-022-00778-x.
- Adetunla, А. and Akinlabi, Е. Fabrication of aluminum matrix composites for automotive industry via multipass friction stir processing technique. International Journal of Automotive Technology, 2019, 20 (6), 1079–1088. DOI: 10.1007/s12239-019-0101-0.
- Cao, T.S. Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review. International Journal of Material Forming, 2015, 10 (2), 1–33. DOI: 10.1007/s12289-015-1262-7.
- Bogatov, A.A., Mizhiritsky, O.I., and Smirnov S.V. Resurs plastichnosti metallov pri obrabotke davleniem [Metal Plasticity Resource Under Metal Forming]. Metallurgiya Publ., Moscow, 1984, 144 p. (In Russian).
- Bai, Y. and Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity, 2008, 24 (6), 1071–1096. DOI: 10.1016/j.ijplas.2007.09.004.
- Xue, L. Stress based fracture envelope for damage plastic solids. Engineering Fracture Mechanics, 2009, 76, 419–438. DOI: 10.1016/j.engfracmech.2008.11.010.
- Khan, A.S. and Liu, H. A new approach for ductile fracture prediction on Al 2024–T351 alloy. International Journal of Plasticity, 2012, 35, 1–12. DOI: 10.1016/j.ijplas.2012.01.003.
- Malcher, L. and Mamiya, E.N. An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant. International Journal of Plasticity, 2014, 56, 232–261. DOI: 10.1016/j.ijplas.2014.01.002.
- Kolmogorov, V.L., Shishmintsev, V.F., and Matveev, G.A. Ultimate deformability of metals tensile-tested to failure under hydrostatic pressure. Physics of Metals and Metallography, 1967, 23 (1), 170–171.
- Rahmanifard, R., Akhlaghi, F. Effect of extrusion temperature on the microstructure and porosity of A356SiCp composites. Journal of Materials Processing Technology, 2007, 187–188, 433–436. DOI: 10.1016/j.jmatprotec.2006.11.077.
- Jia, Y. and Bai, Y. Ductile fracture prediction for metal sheets using all-strain based anisotropic eMMC model. International Journal of Mechanical Sciences, 2016, 115–116, 516–531. DOI: 10.1016/j.ijmecsci.2016.07.022.
- Vichuzhanin, D.I., Khotinov V.A., and Smirnov, S.V. The effect of the stress state on the ultimate plasticity of steel X80. Diagnostics, Resource and Mechanics of materials and structures, 2015, 1, 73–89. DOI: 10.17804/2410-9908.2015.1.073-089. Available at: http://dream-journal.org/issues/2015-1/2015-1_21.html
- Kovka i shtampovka, t. 2: Goryachaya obyemnaya shtampovka [Forging and Stamping, Semenova, E.I., ed., Hot Volume Stamping, vol. 2]. Mashinostroenie Publ., Moscow, 2010, 720 p. (In Russian).
- Vichuzhanin, D.I., Smirnov, S.V., Nesterenko, A.V., and Igumnov, A.S. A fracture locus for a 10 volume-percent B95/SiC metal matrix composite at the near-solidus temperature. Letters on Materials, 2018, 8 (1), 88–93. DOI: 10.22226/2410-3535-2018-1-88-93.
- Pugacheva, N.B., Michurov, N.S., Senaeva, E.I., and Bykova, T.M. Structure and thermophysical properties of aluminum-matrix composites. The Physics of Metals and Metallography, 2016, 117 (11), 1144–1151. DOI: 10.1134/S0031918X16110119.
- Iwasaki, H., Takeuchi, M., Mori, T., Mabuchi, M., and Higashi, K. A comparative study of cavitation characteristics in composite and 7475 aluminum alloy. Scripta Metallurgica et Materialia, 1994, 31 (3), 255–260. DOI: 10.1016/0956-716x(94)90279.
- Mabuchi, M., Higashi, K., and Langdon, T.G. An investigation of the role of a liquid phase in Al Cu Mg metal matrix composites exhibiting high strain rate superplasticity. Acta Metallurgica et Materialia, 1994, 42 (5), 1739–1745. DOI: 10.1016/0956-7151(94)90384-0.
- Grudev, А.P., Zilberg, Yu.V., and Tilik, V.T. Trenie i smazki pri obrabotke metallov davleniem [Friction and Lubricants in Metal Forming by Pressure: Reference Book]. Metallurgiya Publ., Moscow, 1982, 312 p. (In Russian).
- Pugacheva, N.B., Malygina, I.Yu., Michurov, N.S., Senaeva, E.I., and Antenorova, N.P. Effect of heat treatment on the structure and phase composition of aluminum matrix composites containing silicon carbide. Diagnostics, Resource and Mechanics of materials and structures, 2017, 6, 28–36. DOI: 10.17804/2410-9908.2017.6.028-036. Available at: http://dream-journal.org/issues/2017-6/2017-6_161.html
- Pugacheva, N.B. and Senaeva, E.I. Influence of Al/SiC composite structure on corrosion damages nature. AIP Conf. Proc., 2016, 1785, 040049. DOI: 10.1063/1.4967106.
Article reference
The Effect of the Stress State on the Deformability of An Aluminum Matrix Composite with 10 Vol% Sic Particle Filler / D. I. Vichuzhanin, S. V. Smirnov, N. B. Pugacheva, A. V. Nesterenko, P. A. Polyakov // Diagnostics, Resource and Mechanics of materials and structures. -
2024. - Iss. 4. - P. 6-23. - DOI: 10.17804/2410-9908.2024.4.006-023. -
URL: http://eng.dream-journal.org/issues/2024-4/2024-4_456.html (accessed: 01/21/2025).
|