Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2023 Issue 1

All Issues
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

L. F. Koroleva, R. A. Savrai, E. Yu. Prosviryakov, V. A. Kostarev, S. V. Pavlyshko,  P. V. Kostarev

THE EFFECT OF ABRASIVE ADDITIVES ON THE TRIBOTECHNICAL PROPERTIES OF LUBRICANTS FOR THE WHEEL–RAIL SYSTEM

DOI: 10.17804/2410-9908.2023.1.054-064

The paper studies the polishing power of a tribochemically active abrasive material based on a solid solution of iron and aluminum oxides, as well as a solid solution of aluminum and iron oxides modified by zirconium oxide and yttrium oxide additives, and the tribotechnical properties of a lubricant doped with these abrasive materials. The modified Al2O3·Fe2O3·ZrO2·Y2O3 powders prove to have an essentially higher polishing power producing a considerably lower surface roughness than that of the unmodified Al2O3·Fe2O3 powder. By varying the content of the modifying oxides, one can change the tribochemical activity of the abrasive powder and select the best composition depending on the material to be polished. The addition of these abrasive powders is shown to have an essential effect on the tribotechnical properties of the lubricant for the wheel–rail contact. The laboratory testing of the lubricant compositions suggests their effective applicability to the wheel–rail contact.

Acknowledgments: This study was performed within the state assignments for the IES UB RAS, reg. nos. AAAA-A18-118020790142-9 and AAAA-A18-118020790147-4. Optical profilometry and tribotechnical tests were performed in Collective Use Center “Plas-tometriya” of the Institute of Engineering Science UB RAS.

Keywords: tribochemically active abrasive material, polishing ability, surface roughness, lubrication for the wheel–rail system, welding load, wear spot diameter

References:

  1. Tuvshintur B., Vinokurov D.I., Yakimova G.A., Gozbenko V.E. Lubricants for the wheel-rail system. Solution of an excessive wear problem with production wastes used. Systems. Methods. Technologies, 2015, No. 3 (27), pp. 23–31. (In Russian).
  2. Artemov A.S. Polishing nanodiamonds. Physics of the Solid State, 2004, vol. 46, pp. 687–695. DOI: 10.1134/1.1711453.
  3. Jackson M.J., Mills B., Hitchiner M.P. Controlled wear of vitrified abrasive materials for precision grinding applications. Sadhana, 2003, vol. 28, No. 5, pp. 897–914. DOI: 10.1007/BF02703320.
  4. Bakharev V.P. Dispersion of Ceramics and Composites in Diamond Finishing by Free Abrasive. Russ. Engin. Res., 2009, vol. 29, No. 2, pp. 162–168. DOI: 10.3103/S1068798X09020129.
  5. Filatov Y.D., Yashchuk V.P., Filatov A.Y., Heisel U., Storchak M. and Monteil G. Assessment of surface roughness and reflectance of nonmetallic products upon diamond abrasive finishing. J. Superhard Mater., 2009, vol. 31, pp. 338–346 DOI: 10.3103/S1063457609050098.
  6. Storozhenko P.A., Guseinov Sh.L., and Malashin S.I. Nanodispersed powders: synthesis methods and practical applications. Nanotekhnol. Russia, 2009, vol. 4, Nos. 5–6, pp. 262–274. DOI: 10.1134/S1995078009050024.
  7. Pokropivnyi V.V., Silenko P.M. Silicon carbide nanotubes and nanotubular fibers: synthesis, stability, structure and classification. Theor. Exp. Chem., 2006, vol. 42, No. 1, pp. 3–15. DOI: 10.1007/s11237-006-0010-y.
  8. Khanra A.K. Production of boron carbide powder by carbothermal synthesis of gel material. Bull. Mater. Sci., 2007, vol. 30, No. 2, pp. 93–96. DOI: 10.1007/s12034-007-0016-7.
  9. Bogdanov S.P. Influence of superstoichiometric boron on the synthesis of cubic boron nitride. Glass Physics and Chemistry, 2008, vol. 34, No. 3, pp. 336–339. DOI: 10.1134/S1087659608030164.
  10. Degtyareva E.V., Kabakova I.I., Skorodumova E.B., Armyanovskii V.E. An abrasive-resistant corundum ceramic for drawing microwires. Refractories, 1982, vol. 23, Nos. 1–2, pp. 82–87. DOI: 10.1007/BF01397952.
  11. Garshin A.P., Gropyanov V.M., and Lagunov Yu.V. Abrazivnye materialy [Abrasive Materials]. Leningrad, Mashinostroenie Publ., 1983. (In Russian).
  12. Viktorov V.V., Fotiev A.A., and Badich V.D. Abrasive and Thermal Properties of Al2O3–Cr2O3 Solid Solutions. Inorg. Mater., vol. 32, No. 1, pp. 55–57.
  13. Kotov Yu.A., Samatov O.M. Characteristics of aluminum oxide powders produced by impulse wire heating. Poverkhnost, 1994, nos. 10–14, pp. 90–94. (In Russian).
  14. Belousov V.M., Chertov V.M., Rozhkova É.V., Litvin V.I. and Zazhigalov V.A. A sol-gel method for synthesizing porous iron-aluminum oxide substances and regulating their physicochemical characteristics. Theor. Exp. Chem., 1997, vol. 33, No. 2, pp. 103–105. DOI: 10.1007/BF02765955.
  15. Koroleva L.F. Tribochemical Activity of Mixed-Oxide Abrasive Materials in Metal Polishing. Fiz. Khim. Obrab. Mater., 2006, No. 4, pp. 84–92. (In Russian).
  16. Kim Nan-Hoon, Lim Jond-Heun, Kim Sang-Yong, Chang Eui-Goo.  Semi-abrasive free slurry with acid colloidal silica for copper chemical mechanical planarization. Journal of Material Science: Materials in Electronics, 2005, vol. 16, pp. 629–632. DOI: 10.1007/s10854-005-3241-0.
  17. Marchenko E. A. O prirode razrusheniya poverkhnosti metallov pri trenii [On the Nature of Metal Surface Fracture in Friction]. Moscow, Nauka Publ., 1979. (In Russian).
  18. Rebinder P.A. The Significance of physicochemical processes in mechanical failure and processing of solids in engineering. Vestnik AN SSSR, 1940, No. 8, pp. 5–28. (In Russian).
  19. Koroleva L.F. Modified nanoparticle oxides for final polishing. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 2, pp. 48–73. DOI: 10.17804/2410-9908.2016.2.048-073. Available at: http://dream-journal.org/DREAM_Issue_2_2016_Koroleva_L.F._048_073.pdf
  20. Koroleva L.F. Synthesis and abrasive properties of nanoparticulate modified solid solutions of aluminum and iron oxides. Inorganic Materials, 2019, vol. 55 (6), pp. 556–562. DOI: 10.1134/S0020168519060074.
  21. Koroleva L.F. Synthesis and abrasive properties of nanoparticulate MoO2-modified Al2-хFeхO3 and Fe2-yAlyO3 solid solutions. Inorg. Materials, 2010, vol. 46, No. 12, pp. 1330–1336. DOI: 10.1134/S0020168510120113.
  22. Koroleva L.F. Final polishing of metals to obtain nanoroughened surface. Nanotechnologies in Russia, 2012, vol. 7, Nos. 1–2, pp. 67–75. DOI: 10.1134/S1995078012010119.
  23. Koroleva L.F. Nanoparticulate zirconia-modified solid solutions of aluminum-iron oxides for polishing titanium metal. Diagnostics, Resource and Mechanics of materials and structure, 2015, iss. 1, pp. 90–102. DOI: 10.17804/2410-9908. Available at: https://dream-journal.org/DREAM_Issue_1_2015_Koroleva_L._F..pdf
  24. Koroleva L.F. Modifitsyrovannye oksidy, oksogidroksid, shpineli khroma, dlya abrazivnykh i pigmentnykh materialov [Modified Oxides, Oxyhydroxide, Chromium Spinels for Abrasive and Pigmentary Materials]. Ekaterinburg, UrO RAN Publ., 2002, 217 p. ISBN 5-7691-1236-0. (In Russian).
  25. Koroleva L.F. Abrasive properties of aluminum iron oxide nanoparticles. Inorganic Materials, 2009, vol. 45 (10), pp. 1158–1165. DOI: 10.1134/S0020168509100148.
  26. Isasi-Marín J., Pérez-Estébanez M., Díaz-Guerra C., Castillo J.F., Correcher V., Cuervo-Rodríguez M.R. Structural, magnetic and luminescent characteristics of Pr3+-doped ZrO2 powders synthesized by a sol–gel method. Journal of Physics D: Applied Physics, 2009, vol. 42, No. 7. DOI: 10.1088/0022-3727/42/7/075418.


PDF      

Article reference

The Effect of Abrasive Additives on the Tribotechnical Properties of Lubricants for the Wheel–rail System / L. F. Koroleva, R. A. Savrai, E. Yu. Prosviryakov, V. A. Kostarev, S. V. Pavlyshko, P. V. Kostarev // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 1. - P. 54-64. -
DOI: 10.17804/2410-9908.2023.1.054-064. -
URL: http://eng.dream-journal.org/issues/2023-1/2023-1_390.html
(accessed: 03/28/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru