Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. I. Bobrovskii, V. I. Voronin, V. I. Maximov, V. D. Parkhomenko, N. V. Proskurnina, V. V. Sagaradze

NEUTRON DIFFRACTION STUDIES OF CARBIDE PRECIPITATE FORMING IN THE 0.04C–4Cr–18Mn–2V STEEL UNDER THERMAL AGING AND FAST-NEUTRON IRRADIATION

DOI: 10.17804/2410-9908.2024.6.018-034

Aging austenitic steels are characterized by a complex microstructure and various defects and precipitates, which largely determine the properties of steels. The formation and evolution of a system of defects in these materials are accompanied by changes in the Bragg and diffuse neutron scattering spectra. This makes neutron diffraction methods an effective means of studying them. This paper analyzes the results of our neutron diffraction experiments studying the changes in the crystal structure and a system of carbide precipitates in the 0.4C-4Cr-18Mn-2V austenitic manganese steel, which develop in the material under thermal aging and irradiation by fast neutron fluxes. Differences occurring under these effects are revealed. The results of the analysis are in good agreement with the electron microscopic data and supplement them in terms of studying irradiated samples.

Acknowledgment: The research was performed at the IMP Neutron Material Science Complex under the state assignment from the Ministry of Science and Higher Education of the Russian Federation (theme Flux, No. 122021000031-8).

Keywords: neutron diffraction, diffuse scattering, carbide precipitates, aging steels, radiation-induced defects, defect clusters

PDF      

Article reference

Neutron Diffraction Studies of Carbide Precipitate Forming in the 0.04c–4cr–18mn–2v Steel under Thermal Aging and Fast-Neutron Irradiation / V. I. Bobrovskii, V. I. Voronin, V. I. Maximov, V. D. Parkhomenko, N. V. Proskurnina, V. V. Sagaradze // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 18-34. -
DOI: 10.17804/2410-9908.2024.6.018-034. -
URL: http://eng.dream-journal.org/issues/content/article_492.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru