Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. V. Fedotova, K. A. Perov, M. V. Bogatov

LABORATORY SIMULATION OF FAILURE MECHANISMS IN PIPES MADE OF FLEXIBLE AND RIGID POLYMER-REINFORCED MATERIALS AND USED IN THE OIL AND GAS INDUSTRY

DOI: 10.17804/2410-9908.2024.6.047-061

To meet the growing needs of operating organizations for reliable and uninterrupted transportation of hydrocarbon raw materials, composite pipes made of polymer materials are increasingly used. Polymer-reinforced pipes, rigid and flexible, are also used in many industries to transport bottom water, oil, and gas since they are resistant to corrosion and lighter than metal pipes. Polymer pipes with various reinforcement systems have mechanical properties that provide flexibility, strength, durability, and economic benefit in operation compared to pipes made of other materials. This paper considers using laboratory equipment to simulate the conditions of failure of rigid and flexible polymer-reinforced pipes under maximum internal pressure in order to assess their performance and predict their service life under specified operating conditions.

Keywords: polymer-reinforced pipes, maximum hydraulic failure pressure, laboratory equipment, failure mechanism

PDF      

Article reference

Fedotova A. V., Perov K. A., Bogatov M. V. Laboratory Simulation of Failure Mechanisms in Pipes Made of Flexible and Rigid Polymer-Reinforced Materials and Used in the Oil and Gas Industry // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 47-61. -
DOI: 10.17804/2410-9908.2024.6.047-061. -
URL: http://eng.dream-journal.org/issues/content/article_477.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru