Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

L. K. Kogan, A. N. Stashkov

THE EFFECT OF THE ELECTRICAL RESISTIVITY OF CONDUCTIVE COPPER CONNECTIONS ON THE RELIABILITY OF TESTING THE SOLDERING QUALITY OF CLAMP SIDE WALLS BY THE AMPLITUDE EDDY CURRENT METHOD

DOI: 10.17804/2410-9908.2024.5.181-194

A transformer eddy-current transducer with rectangular notches in the poles of its U-shaped core is used to study the effect of a change in electrical resistivity of M1 copper within the range between 0.01724 and 0.01748 μΩ∙m according to GOST 193-79 and GOST 1173-2006 on the error in determining the soldering quality of the side walls of clamps with lead ends of current-carrying rods, which are used to connect stator windings in state-of-the-art designs of hydro- and turbogenerators. Specimens made at different times and received from different power engineering enterprises are studied. It is found that, when the relative difference of electrical resistivity varies within 1.36%, the error in evaluating the level of soldering of the side walls of clamps does not exceed 15.5%. This must be taken into account when performing eddy current testing.

Acknowledgment: The work was performed under the state assignment from the Russian Ministry of Science and Higher Education (theme Diagnostics, No 122021000030-1).

Keywords: eddy current inspection, power equipment, conductive connections, electrical resistivity, soldering, eddy current transducer with rectangular notches in the poles of a U-shaped core, double-frequency testing of soldering, reliability of testing

References:

  1. Chelly A., Glass, S., Belhassen, J., Karsenty, A. Broad review of four-point probe correction factors: enhanced analytical model using advanced numerical and experimental cross-examination. Results in Physics, 2023, 48, 106445–106454. DOI: 10.1016/j.rinp.2023.106445.
  2. Gutiérrez-Vargas, G., Ruiz, A., López-Morelos, V.H., Kim, J.-Y., González-Sánchez, J., and Medina-Flores, A. Evaluation of 475°C embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements. Nuclear Engineering and Technology, 2021, 53 (9), 2982–2989. DOI: 10.1016/j.net.2021.03.018.
  3. Huang, P., Ding, Y., Li, J., Xu, L., and Xie, Y. Conductivity estimation of non-magnetic materials using eddy current method Nondestructive Testing and Evaluation, 2022, 38 (1), 130–146. DOI: 10.1080/10589759.2022.2077939.
  4. Ye, C., Su, Z., Rosell, A., Udpa, L., Udpa, S., Capobianco, T., and Tamburrino, A. A decay time approach for linear measurement of electrical conductivity. NDT & E International, 2019, 102, 169–174. DOI: 10.1016/j.ndteint.2018.12.001.
  5. Mirzaei, M, Ripka, P, and Grim, V. Conductivity measurement of nonferrous plates using a novel sensor with triangular arrangements of triple coils. In: 2022 Joint MMM Intermag Conference (INTERMAG), New Orleans, LA, USA, 2022, pp. 1–5. DOI: 10.1109/INTERMAG39746.2022.9827796.
  6. Gao, P., Wang, C., Li, Y., and Cong, Z. Electromagnetic and eddy current NDT in weld inspection: a review. Insight, 2015, 57 (6), 337–345. DOI: 10.1784/insi.2015.57.6.337.
  7. Tesfalem, H., Peyton, A., Fletcher, A., Brown, M., and Chapman, B. Eddy current sensor and inversion technique for estimation of the electrical conductivity profile of the graphite bricks in an advanced gas-cooled reactor core. In: Electromagnetic Nondestructive Evaluation (XX), Studies in Applied Electromagnetics and Mechanics Series, 2017, 42, 253–264. DOI: 10.3233/978-1-61499-767-2-253. Available at: https://ebooks.iospress.nl/publication/46626
  8. Ma, X., Peyton, A.J., and Zhao, Y.Y. Eddy current measurements of electrical conductivity and magnetic permeability of porous metals. NDT & E International, 2006, 39, 562–568. DOI: 10.1016/j.ndteint.2006.03.008.
  9. Ma, X. and Peyton, A.J. Eddy current measurement of the electrical conductivity and porosity of metal foams. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (2), 570–576. DOI: 10.1109/TIM.2006.873549.
  10. Huang, Z., Zhu, J., Wu, X., Qiu, R., Xu, Z., and Ruan, J. Eddy current separation can be used in separation of non-ferrous particles from crushed waste printed circuit boards Journal of Cleaner Production, 2021, 312, 127755–127762. DOI: 10.1016/j.jclepro.2021.127755.
  11. Kriezis, E.E., Tsiboukis, T.D., Panas, S.M., and Tegopoulos, J.A. Eddy currents: theory and applications. In: Proceedings of the IEEE, 1992, 80 (10), pp. 1559–1589. DOI: 10.1109/5.168666.
  12. Ramos, H.G., Ribeiro, A.L., Jezdik, P., and Neskudla, J. Eddy current testing of conductive materials. In: IEEE Instrumentation and Measurement Technology Conference, 2008, pp. 964–968. DOI: 10.1109/IMTC.2008.4547176.
  13. De Halleux, B., De Limburg Stirum, B., and Ptchelintsev, A. Eddy current measurement of the wall thickness and conductivity of circular non-magnetic conductive tubes. NDT & E International, 1996, 29, 103–109. DOI: 10.1016/0963-8695(96)00001-1.
  14. Nerazrushayuschiy control: spravochnik [Nondestructive Testing: A Handbook in 7 vols., ed., V.V. Klyuev, Vol. 2, Book 2: Eddy Current Testing]. Mashinostroenie Publ., Moscow, 2003, 688 p. (In Russian).
  15. Terekhin, I.V. and Slavinskaya, E.A. Evaluating specific electrical conductivity of two-layered nonmagnetic objects by pulsed eddy-current method. Russian Journal of Nondestructive Testing, 2019, 55, 286–292. DOI: 10.1134/S1061830919040120.
  16. Sophian, A., Tian, G., and Fan, M. Pulsed eddy current non-destructive testing and evaluation: a review. Chinese Journal of Mechanical Engineering, 2017, 30, 500–514. DOI: 10.1007/s10033-017-0122-4.
  17. Maierhofer, C., Röllig, M., Steinfurth, H., Ziegler, M., Kreutzbruck, M., Scheuerlein, C., and Heck, S. Non-destructive testing of Cu solder connections using active thermography. NDT & E International, 2012, 52, 103–111. DOI: 10.1016/j.ndteint.2012.07.010.
  18. Principe, R., Vallejo, L.M., Bailey, J., Berthet, R., Favier, L., Grand-Clement, L., and Savary, F. Phased Array Ultrasonic nondestructive tests of soldered current-carrying bus-bar splices of superconducting magnets. IEEE Transactions on Applied Superconductivity, 2018, 28 (4), 1–8. DOI: 10.1109/TASC.2018.2800735.
  19. Malyy, V.V., Kostyukhin, A.S., and Kinzhagulov, I.Yu. Development of technology for non-destructive quality control of heat exchanger brazed joints and determination of the principles of its automation. Tekhhniko-Tekhnologicheskie Problemy Servisa, 2022, 3 (61), 11–17. (In Russian).
  20. Dorofeev, A.L. Elektro-induktivnaya defektoskopiya [Electro-Inductive Flaw Detection]. Mashinostroenie Publ., Moscow, 1967, 231 p. (In Russian).
  21. Kogan, L., Nichipuruk, A., Savary, F., Pricipe, R., Datskov, V., Rozenfeld, E., and Khudjakov, B. Eddy current of soldered current-carrying bas-bar splices of superconducting magnets. Insight, 2015, 57 (12), 697–702. DOI: 10.1784/insi.2015.57.12.697.
  22. Rozenfeld, E.V., Nichipuruk, A.P., Kogan, L.K., and Khudyakov, B.A. Eddy-current quality control of soldering of current-carrying joints in electrical machines. I. General principles. Russian Journal of Nondestructive Testing, 2010, 46, 281–291. DOI: 10.1134/S1061830910040066.
  23. Kogan, L.K., Nichipuruk, A.P., Rozenfeld, E.V., and Khudyakov, B.A. Eddy-current quality control of soldering of current-carrying joints in electrical machines. II. Experiment. Russian Journal of Nondestructive Testing, 2010, 46, 292–301. DOI: 10.1134/S1061830910040078.
  24. Kogan, L.K., Stashkov, A.N., and Nichipuruk, A.P. Improving the reliability of eddy-current quality control of soldering in current-carrying copper joints and expanding the nomenclature of inspected joints in energy equipment. Russian Journal of Nondestructive Testing, 2018, 54, 784–791. DOI: 10.1134/S1061830918110049.
  25. Syasko, V.A., Roytgarc, M.B., Koroteev, M.Yu., and Solomenchuk, P.V. Quality control of soldered joints of stator windings of turbogenerators at the Electrosila plant. V Mire NK, 2010, 2 (48), 1–9. (In Russian).
  26. Potapov, A.I., Syasko, V.A., Koroteev, M.Y., Solomenchuk, P.V. A finite-element modeling of a probe of eddy-current quality testing of soldered joints in turbogenerator windings. Russian Journal of Nondestructive Testing, 2014, 50, 264–273. DOI: 10.1134/S1061830914050064.
  27. Kogan, L.K., Stashkov, A.N., and Nichipuruk, A.P. Quality control of soldering of side walls of clamps in current-carrying connections of electric machines taking into account the influence of their sizes. Russian Journal of Nondestructive Testing, 2022, 58, 1142–1152. DOI: 10.1134/S1061830922700140.


PDF      

Article reference

Kogan L. K., Stashkov A. N. The Effect of the Electrical Resistivity of Conductive Copper Connections on the Reliability of Testing the Soldering Quality of Clamp Side Walls by the Amplitude Eddy Current Method // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 5. - P. 181-194. -
DOI: 10.17804/2410-9908.2024.5.181-194. -
URL: http://eng.dream-journal.org/issues/content/article_461.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru