Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. V. Batalov, V. D. Bessonov, V. S. Teplov, A. V. Telegin

AN EQUIVALENT MODEL FOR MICROMAGNETIC SIMULATION OF THE MAGNETIZATION OF FERRIMAGNETIC STRUCTURES

DOI: 10.17804/2410-9908.2024.4.035-046

A model for micromagnetic simulation of the magnetization of a ferrimagnetic film consisting of an alloy of ferromagnetic and rare-earth metals is proposed and discussed. It is shown that the model qualitatively replicates the experimentally observed temperature dependencies of the saturation magnetization of various ferrimagnetic alloys for different percentages of the rare-earth element and that it exhibits a similar magnetic hysteresis loop. The results of the study are of interest for the theoretical analysis of the magnetization behavior of ferromagnetic–heavy-metal film nanostructures, as well as for solving problems of applied materials science and magnetism.

Acknowledgments: The work was supported by the Russian Science Foundation, grant No. 21-72-20160 (https://rscf.ru/en/project/21-72-20160). We appreciate the assistance from the shared research facilities center of the FEFU.

Keywords: ferrimagnetic films, micromagnetic simulation, saturation magnetization, magnetic hysteresis, magnetic anisotropy

References:

  1. Stashkevich, A.A. Spin-orbitronics a novel trend in spin oriented electronics. Journal of the Russian Universities. Radioelectronics, 2019, 22 (6), 45–54. DOI: 10.32603/1993-8985-2019-22-6-45-54.
  2. Ustinov, V.V., Yasyulevich, I.A., and Bebenin, N.G. The chiral spin-orbitronics of a helimagnet–normal metal heterojunction. Physics of Metals and Metallography, 2023, 24, 195–204. DOI: 10.1134/S0031918X22601895.
  3. Fert, A. and Van Dau, F.N. Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators. Comptes Rendus Physique, 2019, 20 (7–8), 817–831. DOI:  10.1016/j.crhy.2019.05.020.
  4. Tang, J., Kong, L., Wang, W., Du, H., and Tian, M. Lorentz transmission electron microscopy for magnetic skyrmions imaging. Chinese Physics B, 2019, 28 (8), 087503. DOI: 10.1088/1674-1056/28/8/087503.
  5. Fert, A., Reyren, N., and Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials, 2017, 2 (7), 1–15. DOI: 10.1038/natrevmats.2017.31.
  6. Ding, J., Yang, X., and Zhu, T. Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack. Journal of Physics D: Applied Physics, 2015, 48 (11), 115004. DOI: 10.1088/0022-3727/48/11/115004.
  7. Kang, W., Wu, B., Chen, X., Zhu, D., Wang, Z., Zhang, X., Zhou, Y., Zhang, Y., and Zhao, W. A comparative cross-layer study on racetrack memories: domain wall vs skyrmion. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2019, 16 (1), 1–17. DOI: 10.1145/3333336.
  8. Song, K.M., Jeong, J.S., Pan, B., Zhang, X., Xia, J., Cha, S., Park, T.-E., Kim, K, Finizio, S., Raabe, J., Chang, J., Zhou, Y, Zhao, W., Kang, W., Ju, H., and Woo, S. Skyrmion-based artificial synapses for neuromorphic computing. Nature Electronics, 2020, 3 (3), 148–155. DOI: 10.1038/s41928-020-0385-0.
  9. Göbel, B., Mertig, I., and Tretiakov, O.A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Physics Reports, 2021, 895, 1–28. DOI: 10.1016/j.physrep.2020.10.001.
  10. Wei, W.S., He, Z.D., Qu, Z., and Du, H.F. Dzyaloshinsky–Moriya interaction (DMI)-induced magnetic skyrmion materials. Rare Metals, 2021, 40 (11), 3076–3090. DOI: 10.1007/s12598-021-01746-9.
  11. Ma, M., Pan, Z., and Ma, F. Artificial skyrmion in magnetic multilayers. Journal of Applied Physics, 2022, 132 (4), 043906. DOI: 10.1063/5.0095875.
  12. Leliaert, J. and Mulkers, J. Tomorrow’s micromagnetic simulations. Journal of Applied Physics, 2019, 125 (18), 180901. DOI: 10.1063/1.5093730.
  13. Bo, L., Hu, C., Zhao, R., Zhang, X. Micromagnetic manipulation and spin excitation of skyrmionic structures. Journal of Physics D: Applied Physics, 2022, 55 (33), 333001. DOI: 10.1088/1361-6463/ac6cb2.
  14. Ognev, A.V., Kolesnikov, A.G., Kim, Y.J., Cha, I.H., Sadovnikov, A.V., Nikitov, S.A., Soldatov, I.V., Talapatra, A., Mohanty, J., Mruczkiewicz, M., Ge, Y., Kerber, N., Dittrich, F., Virnau, P., Klaui, M., Kim, Y.K., and Samardak, A.S. Magnetic direct-write skyrmion nanolithography. ACS Nano, 2020, 14 (11), 14960–14970. DOI: 10.1021/acsnano.0c04748.
  15. Landau, L. and Lifshits, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeitsch. der Sow., 1935, 8, 153–169.
  16. Gilbert, T.L. A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Physical Review D, 1955, 100, 1243.
  17. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., and Van Waeyenberge, B. The design and verification of MuMax3. AIP Advances, 2014, 4 (10), 107133. DOI: 10.1063/1.4899186.
  18. Donahue, M.J. and Porter, D.G. OOMMF User's Guide, Version 1.0, 1999. DOI: 10.1002/HTTPS://DX.DOI.ORG/10.6028/NIST.IR.6376.
  19. Teplov, V.S., Bessonov, V.D., and Telegin, A.V. Numerical simulation of magnetization in PMA films. Zhurnal Radioelektroniki, 2022, 7. (In Russian). DOI: https://doi.org/10.30898/1684-1719.2022.7.3. Available at: http://jre.cplire.ru/jre/jul22/3/abstract_e.html
  20. Gubanov, V.A., Kruglyak, V.V., Sadovnikov, A.V. Controlling the modes of spin wave propagation in an yttrium iron garnet waveguide by local laser heating. Bulletin of the Russian Academy of Sciences: Physics, 2023, 87 (3), 362–366. DOI: 10.3103/S1062873822701246.
  21. Teplov, V.S., Bessonov, V.D., Batalov, S.V., and Telegin A.V. 150-degree nonlinear magnetic oscillations in YIG films. Journal of Superconductivity and Novel Magnetism, 2022, 35 (6), 1389–1395. DOI: 10.1007/s10948-022-06208-6.
  22. Ivanov, B.A. Ultrafast spin dynamics and spintronics for ferrimagnets close to the spin compensation point. Low Temperature Physics, 2019, 45 (9), 935–963. DOI: 10.1063/1.5121265.
  23. Zhang, Y., Feng, X., Zheng, Z., Zhang, Z., Lin, K., Sun, X., Wang, G., Wang, J., Wei, J., Vallobra, P., He, Y., Wang, Z., Chen, L., Zhang, K., Xu, Y., and Zhao, W. Ferrimagnets for spintronic devices: from materials to applications. Applied J. Physics Reviews, 2023, 10 (1), 011301. DOI: 10.1063/5.0104618.
  24. Kim, S.K., Beach, G.S., Lee, K.J., Ono, T., Rasing, T., and Yang, H. Ferrimagnetic spintronics. Nature Materials, 2022, 21 (1), 24–34. DOI: 10.1038/s41563-021-01139-4.
  25. Barker, J. and Atxitia, U. A review of modelling in ferrimagnetic spintronics. Journal of the Physical Society of Japan, 2021, 90 (8), 081001. DOI: 10.7566/JPSJ.90.081001.
  26. Tanaka, H., Takayama, S., and Fujiwara, T. Electronic-structure calculations for amorphous and crystalline Gd33Fe67 alloys. Physical Review B, 1992, 46 (12), 7390. DOI: 10.1103/PhysRevB.46.7390.
  27. Stebliy, M.E., Bazrov, M.A., Namsaraev, Z.Z., Letushev, M.E., Kozlov, A.G., Antonov, V.A., Stebliy, E.V., Davydenko, A.V., Ognev, A.V., Shiota, Y., Ono, T., and Samardak, A.S. Nonuniform current-driven formation and displacement of the magnetic compensation point in variable-width nanoscale ferrimagnets. ACS Applied Materials & Interfaces, 2023, 15 (34), 40792-40798. DOI: 10.1021/acsami.3c08979.
  28. Schubert, C., Hebler, B., Schletter, H., Liebig, A., Daniel, M., Abrudan, R., Radu, F., and Albrecht, M. Interfacial exchange coupling in Fe-Tb/[Co/Pt] heterostructures. Physical Review B, 2013, 87, 054415. DOI: 10.1103/PhysRevB.87.054415.
  29. Hassdenteufel, A., Hebler, B., Schubert, C., Liebig, A., Teich, M., Helm, M., Aeschlimann, M., Manfred, A., and Bratschitsch, R. Thermally assisted all-optical helicity dependent magnetic switching in amorphous Fe100-xTbx alloy films. Advanced Materials, 2013, 25 (22), 3122–3128. DOI: 10.1002/adma.201300176.
  30. Hebler, B., Hassdenteufel, A., Reinhardt, P., Karl, H., and Albrecht, M. Ferrimagnetic Tb–Fe alloy thin films: composition and thickness dependence of magnetic properties and all-optical switching. Frontiers in Materials, 2016, 3, 8. DOI: 10.3389/fmats.2016.00008.


PDF      

Article reference

An Equivalent Model for Micromagnetic Simulation of the Magnetization of Ferrimagnetic Structures / S. V. Batalov, V. D. Bessonov, V. S. Teplov, A. V. Telegin // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 4. - P. 35-46. -
DOI: 10.17804/2410-9908.2024.4.035-046. -
URL: http://eng.dream-journal.org/issues/content/article_450.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru