E. D. Serbin, V. N. Perov, V. N. Kostin
NON-CONTACT MEASUREMENT OF THE DYNAMIC MAGNETOSTRICTION PARAMETERS OF FERROMAGNETS
DOI: 10.17804/2410-9908.2023.6.121-131 The magnitude of magnetostriction of a ferromagnetic material largely determines the efficiency of electromagnetic-acoustic transformation and the intensity of magnetoacoustic emission, which are based on the application of alternating magnetic fields. This study shows that laser interferometry allows dynamic magnetostrictive behavior to be measured in an alternating magnetic field. Experiments reveal that dynamic magnetostrictive sensitivity determined from the amplitude of the second harmonic of elastic vibrations in ferromagnetic materials correlates with the value of the maximum magnetostrictive elongation of the studied ferromagnetic materials.
Acknowledgment: The work was performed under a state assignment from the Ministry of Science and Higher Education of Russia (theme Diagnostics, No. 122021000030-1) and partially supported by the youth research project of the IMP UB RAS, No. M8-22. Keywords: ferromagnets, magnetostriction, dynamic magnetostrictive sensitivity, laser interferometry, non-contact measurements References: 1. Belov, K.P. Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozhneiya [Magnetostriction Phenomena and Their Technical Applications]. Nauka Publ., Moscow, 1987, 158 p. (In Russian).
2. Piotrowski, L., Chmielewski, M., and Augustyniak, B. On the correlation between magnetoacoustic emission and magnetostriction dependence on the applied magnetic field. Journal of Magnetism and Magnetic Materials, 2016, 410, 34–40. DOI: 10.1016/j.jmmm.2016.03.018.
3. Kostin, V.N., Guriev, M.A., Vasilenko, O.N., Filatenkov, D.Yu., and Smorodinskii, Ya.G. Amplitude-frequency characteristics of magnetoacoustic emission of heat-treated Fe-alloys. Physical Mesomechanics, 2013, 16, 103–110. (In Russian).
4. Kostin, V.N., Filatenkov, D.Yu., Chekasina, Yu.A., Vasilenko, O.N., and Serbin, E.D. Features of excitation and detection of magnetoacoustic emission in ferromagnetic objects. Physical Foundations of Technical Acoustics, 2017, 63, 237–244. DOI: 10.1134/S1063771017010055.
5. Kostin, V.N., Serbin, E.D., and Vasilenko, O.N. The interrelationships of magnetic and magneto acoustic-emission characteristics of heat-treated steels of various chemical composition. MATEC Web of Conferences, 2018, 145, 1–7. DOI: 10.1051/matecconf/201814505005.
6. Wang, P., Li, Y., Yao, E., Chady, T., Shi, Y., and Han, F. Method of measuring the mechanical properties of ferromagnetic materials based on magnetostriction EMAT and sound velocity. Journal of Magnetism and Magnetic Materials, 2022, 555 (7), 169375. DOI: 10.1016/j.jmmm.2022.169375.
7. Ren, W., Xu, K., and Zhou, P. Fast measurement of magnetostriction coefficients for silicon steel strips using magnetostriction-based EMAT. Sensors, 2018, 18 (12), 4495, 1–13. DOI: 10.3390/s18124495.
8. Sun, C.Z., Sinclair, A., and Filleter, T. Influence of magnetostriction induced by the periodic permanent magnet electromagnetic acoustic transducer (PPM EMAT) on steel. Sensors, 2021, 21, 7700. DOI: 10.3390/s21227700.
9. Chechernikov, V.I. Magnitnye izmereniya [Magnetic Measurements]. Izdatelstvo Moskovskogo Universiteta, Мoscow, 1969, 387 p. (In Russian).
10. Varghese, R., Viswan, R., Joshi, K., Seifikar, S., Zhou, Y., Schwartz, J., and Priya, S. Magnetostriction measurement in thin films using laser Doppler vibrometry. Journal of Magnetism and Magnetic Materials, 2014, 363, 179–187. DOI: 10.1016/j.jmmm.2014.03.076.
11. Serbin, E.D. and Kostin, V.N. On the possibility of evaluating magnetostriction characteristics of bulk ferromagnets based on their magnetic properties. Russian Journal of Nondestructive Testing, 2019, 55, 378–383. DOI: 10.1134/S1061830919050103.
12. Povolotskaya, A.M. and Mushnikov, A.N. Effect of plastic deformation on the magnetic parameters and magnetostriction of the 20GN steel. Procedia Structural Integrity, 2022, 40, 359–364. DOI: 10.1016/j.prostr.2022.04.048.
13. Salloum, E., Maloberti, O., Panier, S., Nesser, M., Klimczyk, P., and Fortin, J. Identification of magnetic induced strain of electrical steels using non-destructive acceleration measurement and inverse vibration modeling. Journal of Sound and Vibration, 2021, 492, 115806. DOI: 10.1016/j.jsv.2020.115806.
14. Dou, Y., Li, Y., Yue, S., Li, Y., and Zhu, J. Measurement of alternating and rotational magnetostrictions of non-oriented silicon steel sheets. Journal of Magnetism and Magnetic Materials, 2023, 571, 170566. DOI: 10.1016/j.jmmm.2023.170566.
15. Ghalamestani, S.G., Vandevelde, L., Dirckx, J.J.J., Melkebeek, J.A.A. Magnetostriction and the advantages of using noncontact measurements. AIP Conference Proceedings, 2010, 1253 (1), 171–175. DOI: 10.1063/1.3455455.
16. Salazar, F., Bayón, A., and Chicharro, J.M. Measurement of magnetostriction coefficient λs by speckle photography. Optics Communications, 2009, 282 (4), 635–639. DOI: 10.1016/j.optcom.2008.10.052.
17. Vladimirov, A.P. Time-average dynamic speckle interferometry. AIP Conf. Proc., 2014, 1600, 237–242. DOI: 10.1063/1.4879588.
18. Kostin, V.N., Serbin, E.D., Vladimirov, A.P., and Rogova, E.A. Non-contact measurement of magnetostriction of ferromagnetic materials by laser interferometry and speckle interferometry. Procedia Structural Integrity, 2023, 50, 151–154. DOI: 10.1016/j.prostr.2023.10.035.
19. Bellesis, G.H., Harlee, P.S., Renema, A., Lambeth, D.N. Magnetostriction measurement by interferometry. IEEE Transactions on Magnetics, 1993, 29 (6), 2989–2991. DOI: 10.1109/20.281096.
20. Kim, M.H., Lee, K.S., and Lim, S.H. Magnetostriction measurements of metallic glass ribbon by fiber-optic Mach–Zehnder interferometry. Journal of Magnetism and Magnetic Materials, 1999, 191 (1–2), 107–112.
21. Samata, H., Nagata, Y., Uchida, T., and Abe, S. New optical technique for bulk magnetostriction measurement. Journal of Magnetism and Magnetic Materials, 2000, 212, 355–360. DOI: 10.1016/S0304-8853(99)00832-X.
22. Siebert, S., Kajiwara, C., Fujiwara, K., and Klimczyk, P. Establishment of the standard method of magnetostriction measurement of grain-oriented electrical steel strip and sheet. Journal of Magnetism and Magnetic Materials, 2023, 565, 170295. DOI: 10.1016/j.jmmm.2022.170295.
23. Muravyev, V.V., Volkova, L.V., Platunov, A.V., and Kulikov, V.A. An electromagnetic-acoustic method for studying stress-strain states of rails. Russian Journal of Nondestructive Testing, 2016, 52, 370–376. DOI: 10.1134/S1061830916070044.
24. Muravyev, V.V., Muravyeva, O.V., and Petrov, K.V. Contactless electromagnetic acoustic techniques of diagnostics and assessment of mechanical properties of steel rolled bars. Materials Physics and Mechanics, 2018, 38 (1), 48–53. DOI: 10.18720/MPM.3812018_7.
25. Serbin, E.D., Kostin, V.N., Vasilenko, O.N., Ksenofontov, D.G., Gerasimov, E.G., Terentyev, P.B. Influence of the two-stage plastic deformation on the complex of the magnetoacoustic characteristics of low-carbon steel and diagnostics of its structural state. NDT&E International, 2020, 116 (7), 102330. DOI: 10.1016/j.ndteint.2020.102330.
26. Kostin, V.N. Irreversible remagnetization of polycrystalline ferromagnets on the asymmetric hysteresis loops and its use in nondestructive testing. Defektoskopiya, 1989, 9, 68–76. (In Russian).
27. Serbin, E.D. Program for calculating the magnetostrictive sensitivity of ferromagnetic materials “MgntstrSens”, R.F. Certificate of State Registration 2023660788. (In Russian).
28. Vonsovskiy, S.V. and Shur, Ya.S. Ferromagnetizm [Ferromagnetism]. Gostekhizdat Publ., Moscow–Leningrad, 1948, 816 p. (In Russian).
29. Bozorth R. Ferromagnetizm [Ferromagnetism]. Izd-vo Inostr. Lit., Moscow, 1956, 784 p. (In Russian).
Article reference
Serbin E. D., Perov V. N., Kostin V. N. Non-Contact Measurement of the Dynamic Magnetostriction Parameters of Ferromagnets // Diagnostics, Resource and Mechanics of materials and structures. -
2023. - Iss. 6. - P. 121-131. - DOI: 10.17804/2410-9908.2023.6.121-131. -
URL: http://eng.dream-journal.org/issues/content/article_421.html (accessed: 12/21/2024).
|