Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. P. Shveikin, I. S. Kamantsev, N. B. Pugacheva, S. M. Zadvorkin, E. I. Senaeva, A. V. Razinkin, T. V. Maltseva, N. A Kalinina, T. M. Bykova, P. A. Skorynina, E. A. Putilova

APPLICATION OF MICROINDENTATION TO THE EVALUATION OF STRAIN DISTRIBUTION OVER THE SECTION OF EXTRUDED ALUMINUM ALLOY BARS

DOI: 10.17804/2410-9908.2023.6.045-064

The paper proposes to supplement the monitoring of strain uniformity over the cross-section of extruded aluminum alloy bars, based on the macro- and microstructure in the central part, at ½ radius, and in the surface zone in several cross-sections along the length of press products, with microindentation of these sections. For this purpose, the microstructure, the loading diagram, and the pattern of the distribution of micromechanical properties across the cross-section of extruded bars made of the AD33 and D16 aluminum alloys are comparatively analyzed. These alloys differ in that in one alloy, AD33, the alloying elements strengthen the aluminum-based solid solution without forming independent phases, and in the other, D16, they form strengthening intermetallic compounds Al2CuMg. The microhardness of the AD33 alloy is ~55 HV 0.1, that of the D16 alloy being 120 HV 0.1. The alloys differ in the distribution of micromechanical properties over both the transverse and longitudinal sections of the extruded bars. It has been found that maximum homogeneity is characteristic of the central part of the rods made of both alloys. The microindentation data correlate with the changes in the microstructure and the results of assessing the distribution of microstrains in the crystal lattice of an aluminum-based solid solution over the cross-section of extruded products by EBSD using recrystallization maps. This makes it possible to recommend the microindentation method for assessing the distribution of strains over the cross-section of extruded aluminum alloy bars.

Acknowledgments: The work was performed under the state assignment for the IES UB RAS. The equipment of the Plastometriya shared research facilities at the IES UB RAS was used in the research.

Keywords: aluminum alloys, compaction, microstructure, instrumented indentation, micromechanical properties, deformation, recrystallization, strength, moldability

References:

  1. Livanov, V.A., ed. Struktura i svoystva polufabrikatov iz alyuminievykh splavov [Structure and Properties of Semi-Finished Products from Aluminum Alloys, series Aluminum Alloys: Handbook]. Metallurgiya Publ., Moscow, 1974, 432 p. (In Russian).
  2. Gun, G.Ya., Yakovlev, V.I., and Prudkovsky, B.A. Pressovanie alyuminievykh splavov [Pressing of Aluminum Alloys]. Metallurgiya Publ., Moscow, 1974, 362 p. (In Russian).
  3. Ermanok, M.Z., Feigin, V.I., and Sukhorukov, N.A. Pressovanie profiley iz alyuminievykh splavov [Extrusion of Aluminum Alloy Profiles]. Metallurgiya Publ., Moscow, 1977. (In Russian).
  4. Kuzmenko, V.A. Pressovanie alyuminievykh splavov [Pressing of Aluminum Alloys]. Metallurgiya Publ., Moscow, 1986, 108 p. (In Russian).
  5. Raitbarg, L.Kh. Proizvodstvo pressovannykh profiley [Production of Pressed Profiles]. Metallurgiya Publ., Moscow, 1984, 264 p. (In Russian).
  6. Perlin, I.L. and Reitbarg, L.Kh. Teoriya pressovaniya metallov [Theory of the Pressing of Metals]. Metallurgiya Publ., Moscow, 1975, 448 p. (In Russian).
  7. Kolachev, B.A., Elagin, V.I., and Livanov, B.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Metallurgy and Heat Treatment of Non-Ferrous Metals and Alloys, 4th ed.]. MISiS Publ., Moscow, 2005, 432 p. (In Russian).
  8. Teleshov, V.V., Snegireva, L.A., and Zakharov, V.V. On the influence of some processing factors on the structure and properties of large-sized extruded semiproducts. Tekhnologiya Legkikh Splavov, 2022, 1, 10–21. DOI: 10.24412/0321-4664-2022-1-10-21. (In Russian).
  9. Loginov, Yu.N. and Degtyareva, O.F. Influence of the stage of pressing out of a hollow aluminum alloy ingot on the process of subsequent pressing. Kuznechno-Shtampovochnoye Proizvodstvo. Obrabotka Materialov Davleniyem, 2007, 7, 37–42. (In Russian).
  10. Loginov, Yu.N., Razinkin, A.V., Shimov, G.V., Maltseva, T.V., Bushueva, N.I., Dymshakova, E.G., and Kalinina, N.A. Structure and strain state of aluminum bars at the initial phase of extrusion. Izvestiya Vuzov. Tsvetnaya Metallurgiya, 2023, 29 (2), 29–37. DOI: 10.17073/0021-3438-2023-2-29-37. (In Russian).
  11. Loginov, Yu.N. and Antonenko, L.V. Study of the stress-strain state to prevent the formation of longitudinal cracks in pressed pipes. Tsvetnyye Metally, 2010, 5, 119–122. (In Russian).
  12. Danilin, A.V., Danilin, V.N., and Romantsev, B.A. Predicting the type of structure after pressing in products made of hard-to-form aluminum alloys based on the results of mathematical modeling. Kuznechno-Shtampovochnoye Proizvodstvo. Obrabotka Materialov Davleniyem, 2019, 1, 26–38. (In Russian).
  13. Berndt, N., Frint, P., Bohme, M., Muller, S., and Wagner, M.F.-X. On radial microstructural variations, local texture and mechanical gradients after cold extrusion of commercially pure aluminum. Materials Science and Engineering: A, 2022, 850, 143496. DOI: 10.1016/j.msea.2022.143496.
  14. Hambli, R. and Badie-Levet, D. Damage and fracture simulation during the extrusion processes. Computer Methods in Applied Mechanics and Engineering, 2000, 186, 1, 109–120. DOI: 10.1016/S0045-7825(99)00109-7.
  15. Golovin, Yu.I. Nanoindentirovanie i ego vozmozhnosti [Nanoindentation and Its Capabilities]. Mashinostroenie Publ., Moscow, 2009, 312 p. (In Russian).
  16. Petrzhik, M.I. and Levashov, E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallography Reports, 2007, 52, 966–974. DOI: 10.1134/S1063774507060065.
  17. Smirnov, S.V., Pugacheva, N.B., Tropotov, A.V., and Soloshenko, A.N. Resistance to deformation of structural constituents of a high-alloy brass. Physics of Metals and Metallography, 2001, 91 (2), 210–215.
  18. ISO 14577-2:2002. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 2 (has been revised by ISO 14577-1:2015).
  19. Oliver, W.C. and Pharr, J.M. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7 (6), 1564–1583. DOI: 10.1557/JMR.1992.1564.
  20. Smirnov, S.V. and Smirnova, E.O. A technique for determining coefficients of the “stress–strain” diagram by nanoscratch test results. Journal of Materials Research, 2014, 29, 1730–1736. DOI: 10.1557/jmr.2014.188.
  21. Golovin, Yu.I. Zondovye nanotekhnologii [Probe Nanotechnologies, ch. 5]. In: D.L. Merson, ed. Advanced Materials. Structures and Methods of Study, TGU, MISiS Publ., Moscow, 2006, pp. 149–246. (In Russian).
  22. Leyland, A. and Matthews, A. On the significance of the H/E Ratio in wear control: a nanocomposite coating approach to optimized tribological behavior. Wear, 2000, 246 (1–2), 1–11. DOI: 10.1016/S0043-1648(00)00488-9.
  23. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., and Osintseva, A.L. Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A. Physics of Metals and Metallography, 2007, 103 (5), 507–518. DOI: 10.1134/S0031918X07050110.
  24. Savrai, R.A., Skorynina, P.A., Makarov, A.V., and Osintseva, A.L. Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel. Physics of Metals and Metallography, 2020, 121 (10), 1015–1020. DOI: 10.1134/S0031918X20100105.
  25. Pugacheva, N.B., Nikolin, Y.V., Bykova, T.M., and Senaeva, E.I. Structure and properties of a SHS Cu–Ti–C–B composite. Physics of Metals and Metallography, 2022, 123, 43–49. DOI: 10.1134/S0031918X22010100.
  26. Wilkinson, A.J., Meaden, G., and Dingley, D.J. High resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy, 2006, 106 (4–5), 307–313. DOI: 10.1016/j.ultramic.2005.10.001.
  27. Davis, A.E., Hönnige, J.R., Martina, F., and Prangnell, P.B. Quantification of strain fields and grain refinement in Ti-6Al-4V inter-pass rolled wire-arc AM by EBSD misorientation analysis. Materials Characterization, 2020, 170, 110673. DOI: 10.1016/j.matchar.2020.110673.
  28. Schwarzer, R.A., Field, D.P., Adams, B.L., Kumar, M., and Schwartz, A.J. Present state of electron backscatter diffraction and prospective developments. In: Electron Backscatter Electron Backscatter Diffraction in Materials Science, Springer, Berlin, 2009, pp. 1–20.
  29. Arsenlis, А. and Parks, D. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia, 1999, 47, 1597–1611. DOI: 10.1016/S1359-6454(99)00020-8.
  30. Kamaya, M., Wilkinson, A.J., and Titchmarsh, J.M. Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction. Acta Materialia, 2006, 54 (2), 539–548. DOI: 10.1016/j.actamat.2005.08.046.
  31. Maurice, C. and Fortunier, R.A 3D Hough transform for indexing EBSD and Kossel patterns. Journal of Microscopy, 2008, 230, 520–529. DOI: 10.1111/j.1365-2818.2008.02045.x.
  32. Rusakov, A.A. Rentgenografiya metallov [Radiography of Metals]. Atomizdat Publ., Moscow, 1977, 480 p. (In Russian).
  33. Mirkin, L.I. Rentgenostrukturnyi kontrol mashinostroitelnykh materialov: spravochnik [X-Ray Structural Control of Machine-Building Materials]. MGU Publ., Moscow, 1976, 134 p. (In Russian).
  34. ISO 14577-2:2015. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 2: Verification and calibration of testing machines. – 2015.
  35. Maltsev, V.M. Metallografiya promyshlennykh tsvetnykh metallov i splavov [Metallography of Industrial Non-Ferrous Metals and Alloys]. Metallurgiya Publ., Moscow, 1970, 364 p. (In Russian).
  36. Samsonov, G.V., ed. Svoystva elementov. Fizicheskie svojstva [Properties of Elements. Physical Properties, part 1: reference book]. Metallurgiya Publ. Moscow, 1976, 600 p. (In Russian).
  37. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M. Rekristallizatsiya metallov i splavov [Recrystallization of Metals and Alloys]. MISiS Publ., Moscow, 2005, 432 p. (In Russian).


PDF      

Article reference

Application of Microindentation to the Evaluation of Strain Distribution over the Section of Extruded Aluminum Alloy Bars / V. P. Shveikin, I. S. Kamantsev, N. B. Pugacheva, S. M. Zadvorkin, E. I. Senaeva, A. V. Razinkin, T. V. Maltseva, N. A Kalinina, T. M. Bykova, P. A. Skorynina, E. A. Putilova // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 6. - P. 45-64. -
DOI: 10.17804/2410-9908.2023.6.045-064. -
URL: http://eng.dream-journal.org/issues/content/article_419.html
(accessed: 09/12/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru