Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






D. I. Kryuchkov, N. B. Pugacheva, T. M. Bykova


DOI: 10.17804/2410-9908.2023.6.008-025

The paper studies the technology of deformation and heat treatment of an aluminum-matrix composite material under nonstationary conditions, which is upsetting with gradual heating to near-solidus temperatures under mild loading conditions. The composite material is based on the V95 aluminum alloy discretely reinforced with 10% of SiC particles. The purpose of the study is to compare the deformation behavior of the samples and analyze their microstructure under different conditions of thermal deformation processing. The structure of the material is studied by optical and electron scanning microscopies. The paper discloses the behavior of the rate of relative strain as dependent on temperature, as well as the features of structure formation in an aluminum-matrix composite depending on the heating conditions. The most pronounced differences are found in the central part of the samples closer to the deforming tool (flat dies). On the symmetry axis in the central region of the samples there are differences in the crystallographic orientations of the material textures. Microhardness values and their distribution on the section are obtained. For the sample with slow heating, there is no tendency for the increase of the microhardness values in the regions with high values of plastic strain, this being indicative of a more complete recrystallization process and lower dislocation density.

Acknowledgments: The study used the equipment available at the Plastometriya shared research facilities (the IES UB RAS). It was performed under the governmental assignment for the IES UB RAS. We appreciate the contribution from Prof. S. V. Smirnov, head of the laboratory of material micromechanics, who provided us with the material for the samples.

Keywords: composite, aluminum, silicon carbide, thermal deformation processing, hardness, scanning microscopy


  1. Kurganova, Yu.A. and Kolmakov, A.G. Konstruktsionnye metallomatrichnye kompozitsionnye materialy: uchebnoye posobiye [Structural Metal Matrix Composites: Educational Book]. Izd-vo MGTU im. N.E. Baumana Publ., Moscow, 2015, 141 р. (In Russian).
  2. Kainer, K. Basics of metal matrix composites. In: Metal Matrix Composites: Custom‐made Materials for Automotive and Aerospace Engineering, K.U. Kainer. ed., Wiley‐VCH Verlag GmbH & Co. KGaA, 2006, pp. 1–54. DOI: 10.1002/3527608117.ch1.
  3. Miracle, D.B. Metal matrix composites – from science to technological significance. Composites Science and Technology, 2005, 65 (15–16), 2526–2540. DOI: 10.1016/j.compscitech.2005.05.027.
  4. Kablov, E.N., Schetanov, B.V., Graschenkov, D.V., Shavnev, A.A., and Nyafkin, A.N. Metallic composite materials on the base of Al‒SiC. Aviatsionnyye Materialy i Tekhnologii, 2012, S, 373–380. (In Russian).
  5. Shavnev, A.A., Berezovskiy, V.V., and Kurganova, Yu.A. Specificity of metal matrix composites based on aluminum alloy reinforced by SiC particles application. Part I (review). Novosti Materialovedeniya. Nauka i Tekhnika, 2015, 3 (15), 3–10. (In Russian).
  6. Shavnev, A.A., Berezovskiy, V.V., and Kurganova, Yu.A. Features of the use of structural metal composite material based on aluminum alloy reinforced with SiC particles. Part II (review). Novosti Materialovedeniya. Nauka i Tekhnika, 2015, 3 (15), 11–17. (In Russian).
  7. Stoyakina, E.A., Kurbatkina, E.I., Simonov, V.N., Kosolapov, D.V., and Gololobov, A.V. Mechanical properties of aluminium-matrix composite materials reinforсed with SiC particles, depending on the matrix alloy (review). Trudy VIAM, 2018, 2 (62), 62–73. DOI: 10.18577/2307-6046-2018-0-2-8-8. (In Russian).
  8. Vani, V.V. and Chak, S.K. The effect of process parameters in aluminum metal matrix composites with powder metallurgy. Manufacturing Review, 2018, 5 (7), 13. DOI: 10.1051/mfreview/2018001.
  9. Sharma, M.M., Ziemian, C.W., and Eden, T.J. Fatigue behavior of SiC particulate reinforced spray-formed 7XXX series Al-alloys. Materials & Design, 2011, 32 (8–9), 4304–4309. DOI: 10.1016/j.matdes.2011.04.009.
  10. Smirnov, A.S., Belozerov, G.A., Konovalov, A.V., Shveikin, V.P., and Muizemnek, O.Yu. Rheological behavior and the formation of the microstructure of a composite based on an Al-Zn-Mg-Cu alloy with a 10% SiC content. AIP Conference Proceedings, 2016, 1785, 040068. DOI: 10.1063/1.4967125.
  11. Kurbatkina, E.I., Shavnev, A.A., Kosolapov, D.V., and Gololobov, A.V. Features of thermal processing of composite materials with the aluminium matrix (review). Trudy VIAM, 2017, 11 (59), 82–97. DOI: 10.18577/2307-6046-2017-0-11-9-9. (In Russian).
  12. Pugacheva, N.B., Malygina, I.Yu., Michurov, N.S., Senaeva, E.I., and Antenorova, N.P. Effect of heat treatment on the structure and phase composition of aluminum matrix composites containing silicon carbide. Diagnostics, Resource and Mechanics of materials and structures, 2017, 6, 28–36. DOI: 10.17804/2410-9908.2017.6.028-036. Available at: http://dream-journal.org/issues/2017-6/2017-6_161.htmldx.doi.org/10.17804/2410-9908.2017.6.028-036
  13. Pugacheva, N.B., Michurov, N.S., Senaeva, E.I., and Bykova, T.M. Structure and thermophysical propertiesof aluminum-matrix composites. The Physics of Metals and Metallography, 2016, 117 (11), 1188–1195. DOI: 10.1134/S0031918X16110119.
  14. Smirnov, S.V., Vichuzhanin, D.I., Nesterenko, A.V., Pugacheva, N.B., and Konovalov, A.V. A fracture locus for a 50 volume-percent Al/SiC metal matrix composite at high temperature. International Journal of Material Forming, 2017, 10 (5), 831–843. DOI: 10.1007/s12289-016-1323-6.
  15. Xiong, Z., Geng, L., and Yao, C.K. Investigation of high-temperature deformation behavior of a SiC whisker reinforced 6061 aluminium composite. Composites Science and Technology, 1990, 39 (2), 117–125. DOI: 10.1016/0266-3538(90)90050-F.
  16. Razaghian, A., Yu, D., and Chandra, T. Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature. Composites Science and Technology, 1998, 58 (2), 293–298. DOI: 10.1016/S0266-3538(97)00130-9.
  17. Kurbatkina, E.I., Kosolapov, D.V., Gololobov, A.V., and Shavnev, A.A. Study on the structure and properties of Al–Zn–Mg–Cu/SiC composite. Tsvetnyye Metally, 2019, 1, 40–45. DOI: 10.17580/tsm.2019.01.06. (In Russian).
  18. Čadek, J., Kuchařová, K., and Zhu, S.J. High temperature creep behaviour of an Al-8.5Fe-1.3V-1.7Si alloy reinforced with silicon carbide particulates. Materials Science and Engineering: A, 2000, 283 (1–2), 172–180. DOI: 10.1016/S0921-5093(00)00706-1.
  19. Čadek, J., Kuchařová, K., and Zhu, S.J. Transition from athermal to thermally activated detachment of dislocations from small incoherent particles in creep of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates. Materials Science and Engineering: A, 2001, 297 (1–2), 176–184. DOI: 10.1016/S0921-5093(00)01258-2.
  20. Ma, Z.Y. and Tjong, S.C. High-temperature creep behaviour of SiC particulate reinforced Al–Fe–V–Si alloy composite. Materials Science and Engineering: A, 2000, 278 (1–2), 5–15. DOI: 10.1016/S0921-5093(99)00613-9.
  21. Božić, D., Vilotijević, M., Rajković, V., and Gnjidić, Ž. Mechanical and fracture behaviour of a SiC-particle-reinforced aluminum alloy at high temperature. Materials Science Forum, 2005, 494, 487–492. DOI: 10.4028/www.scientific.net/MSF.494.487.
  22. Smirnov, S.V., Kryuchkov, D.I., Nesterenko, A.V., Berezin, I.M., and Vichuzhanin, D.I. Experimental study of short-term transient creep of the Al/SiC metal-matrix composite under uniaxial compression. PNRPU Mechanics Bulletin, 2018, 4, pp. 98–105. DOI: 10.15593/perm.mech/2018.4.09. (In Russian).
  23. Vichuzhanin, D.I., Smirnov, S.V., Nesterenko, A.V., and Igumnov, A.S. A fracture locus for a 10 volume-percent B95/SiC metal matrix composite at the near-solidus temperature. Letters on Materials, 2018, 8 (1), 88–93.
  24. Pugacheva, N.B., Kryuchkov, D.I., Nesterenko, A.V., Smirnov, S.V., and Shveikin, V.P. Studying the short-term high-temperature creep in the Al–6Zn–2.5Mg–2Cu/10SiCp aluminum matrix composite. Physics of Metals and Metallography, 2021, 122 (8), 782–788. DOI: 10.1134/S0031918X21080111.
  25. Kryuchkov, D.I., Nesterenko, A.V., Smirnov, S.V., Pugacheva, N.B., Vichuzhanin, D.I., and Bykova, T.M. Influence of all-round forging under short-term creep conditions on the structure and mechanical properties of the Al7075/10SiCp composite with an aluminum matrix. Physics of Metals and Metallography, 2021, 122 (10), 981–990. DOI: 10.1134/S0031918X21100069.
  26. Su, Y.H.F., Chen, Y.C., and Tsao, C.Y.A. Workability of spray-formed 7075 Al alloy reinforced with SiCp at elevated temperatures. Materials Science and Engineering A, 2004, 364, 296–304.
  27. Smirnov-Alyayev, G.A. Soprotivleniye materialov plasticheskomu deformirovaniyu [Material Resistance to Plastic Deformation]. Mashinostroenie Publ., Leningrad, 1978, 368 p. (In Russian).
  28. Smirnov, A.S. and Konovalov, A.V. Modeling of rheological behavior and microstructure formation of metal-matrix composites of the Al-SIC system under conditions of high deformation temperatures. In: XII Vserossiyskiy syezd po fundamentalnym problemam teoreticheskoy i prikladnoy mekhaniki: sbornik trudov [XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics, Ufa, 2019: Collection of Proceedings, vol. 3]. Bashkirskiy Gosudarstvennyy Universitet, Ufa, 2019, 1458–1460. (In Russian).
  29. Jiang, J.-f., Chen, G., and Wang, Y. Compression mechanical behaviour of 7075 aluminium matrix composite reinforced with nano-sized SiC particles in semisolid state. Journal of Materials Science & Technology, 2016, 32 (11), 1197–1203. DOI: 10.1016/j.jmst.2016.01.015.
  30. Bian, T.J., Li, H., Yang, J.C., Lei, C., Wu, C.H., Zhang, L.W., and Chen, G.Y. Through-thickness heterogeneity and in-plane anisotropy in creep aging of 7050 Al alloy. Materials & Design, 2020, 196, 109–190.
  31. Salishchev, G.A., Mironov, S.Yu., Zherebtsov, S.V., and Belyaev, A.N. Effect of deformation on misorientations of grain boundaries in metallic materials. Fizika i Mekhanika Materialov, 2016, 25 (1), 42–48. (In Russian).
  32. Lobanov, M.L., Yurovskikh, A.S., Kardonina, N.I., and Rusakov, G.M. Metody issledovaniya tekstur v materialakh [Methods for Studying Textures in Materials]. Ural University Publ., Ekaterinburg, 2014, 115 p. (In Russian).


Article reference

Kryuchkov D. I., Pugacheva N. B., Bykova T. M. Deformation of Al–zn–mg–cu Composite Samples under Nonstationary Thermomechanical Conditions // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 6. - P. 8-25. -
DOI: 10.17804/2410-9908.2023.6.008-025. -
URL: http://eng.dream-journal.org/issues/content/article_411.html
(accessed: 05/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru