Yu. V. Zamaraeva, L. I. Knysh, E. M. Gaisin
EXPERIENCE IN THE APPLICATION OF SIMULATION OF HOT FORGING IN PRODUCTION CONDITIONS AT THE KUMW JSC
DOI: 10.17804/2410-9908.2023.5.069-082 Software for computer simulation of metal forging processes is a reliable tool for designing dies and developing technological processes, which allows one to avoid defects and predict product quality. The paper describes the experience of the KUMW JSC in simulating with the Deform and QForm software packages. The distinctive advantages of the QForm domestic software are exemplified by the forging of a roller disk. Proceeding from the described advantages, the KUMW JSC has selected QForm as effective software to solve the problems of die forging. The paper provides examples of applying this software. QForm is used to evaluate die filling in the forging of an odd-shaped part. Significant under-forming of the part was identified, and the technology was optimized in order to eliminate them. Additionally, by using this software, the shape and weight of a blank for forging a landing gear leg were optimized, and this has resulted in a 15% increase in geometric yield. After only one die-forged item code was modeled and the durability of the tooling was evaluated from stress intensity and displacement, the tooling material was replaced, the critical zone radius was locally increased, and the method for manufacturing die tooling was altered. This increased tool durability by 28%. The presence of the Hartfield postprocessor subroutine in QForm has made it possible to predict the zones of the occurrence of forging defects during the processing of the odd-shaped part and to correct the production scheme in good time. Each simulation example is supported by industrial experiment.
Acknowledgments: The research was performed under the state assignment on the subject “Pressure”, No. AAAAA18-118020190104-3. Keywords: computer simulation, QForm, hot forging, dies, optimization References:
- Ershov, A.A. and Loginov, Yu.N. Use of the program PAM-STAMP to study the effect of the as-received condition of a material on its formability during stamping. Metallurgist, 2014, 58 (3–4), 162–166. DOI: 10.1007/s11015-014-9886-2.
- Loginov, Yu.N., Zamaraeva, Yu.V., and Kamenetsky, B.I. Angular strips extrusion modeling in 3D setting. Kuznechno-Shtampovochnoe Proizvodstvo. Obrabotka Materialov Davleniem, 2019, 9, 33–37. (In Russian).
- Belov, M.I. Effectiveness of using mathematical simulation in the study, optimization, and design of metal forming processes. In: Plasticheskaya deformatsiya staley i splavov [Plastic Deformation of Steels and Alloys]. MISiS Publ., Moscow, 1996, pp. 224–227. (In Russian).
- Rybin, Yu.I., Rudskoi, A.I., and Zolotov, A.M. Matematicheskoe modelirovanie i proektirovanie tekhnologicheskikh protsessov obrabotki metallov davleniem [Mathematical Modeling and Designing of Technological Processes of Metal Forming]. Nauka Publ., St. Petersburg: 2004. 645 p. (In Russian).
- Fomichev, A.F., Yurgenson, E.E., and Panin, S.Yu. Computer study of technological parameters during stamping. Kuznechno-Shtampovochnoe Proizvodstvo. Obrabotka Materialov Davleniem, 2010, 8, 38–42. (In Russian).
- Galkin, V.V., Pozdyshev, V.A., Vashurin, A.V., and Pachurin, G.V. Mathematical modeling of the production of an article type by deep hot glass dome on the basis of software deform. Fundamentalnye Issledovaniya, 2013, 1, 371–374. (In Russian).
- Alekseev, A.V. Hot dimensional stamping. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Tekhnicheskie Nauki, 2021, 6, 406–409. (In Russian).
- Myshechkin, A.A., Kravchenko, I.N., Preobrazhenskaya, E.V., Kudryavtsev, I.V., Belousov, I.V., and Skripnik, S.V. Research and improvement of drop stamping of valve-type flange forgings by modeling in the QForm software. Steel in Translation, 2023, 53, 579–585. DOI: 10.3103/S0967091223070094.
- Konstantinov, I.L., Gubanov, I.Yu., Klemenkova, D.V., Astrashabov, I.O., Sidelnikov, S.B., and Gorokhov, Yu.V. Computer-simulated upgrading procedures of the hot aluminum-alloy forging process technology. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova, 2016, 14 (1), 46–52. DOI: 10.18503/1995-2732-2016-14-1-46-52. (In Russian).
- Available at: http://www.DEFORM.com/
- Gallagher, R. Finite Element Analysis. Fundamentals, Prentice–Hall Publ., Englewood Cliffs, NJ, 1975, 416 p.
- Zienkiewiez, O.C. The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.
- Vlasov, A.V., Stebunov, S.A., Evsyukov, S.A., Biba, I.V., and Shitikov, A.A., ed. by A.V. Vlasov. Konechno-elementnoe modelirovanie tekhnologicheskikh protsessov kovki i obyemnoy shtampovki: uchebnoe posobie [Finite Element Modeling of Technological Processes Forging and Volumetric Stamping: Textbook]. Izdatelstvo MGTU im. N.E. Baumana Publ., Moscow, 2019, 383 p. (In Russian).
- Alekseev, S.Yu. Increasing die life during die forging by means of QForm modeling. Metallurgist, 2022, 66, 711–714. DOI: 10.1007/s11015-022-01379-y.
- Konstantinov, I.L., Gubanov, I.Yu., Gorokhov, Yu.V., and Astrashabov, I.O. Application of computer simulation for aluminium alloy forging technology advancement. Tsvetnye Metally, 2015, 11, 68–71. DOI: 10.17580/tsm.2015.11.12. (In Russian).
- Shmakov, A.K., Kolesnikov, A.V., Maksimenko, N.V., and Stanislavchik, A.S. Optimization of hot forging with the aid of the QFORM simulation. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 2013, 4, 28–31. (In Russian).
- Bryukhanov, A.N., Rebelsky, A.V. Goryachaya shtampovka. Konstruirovanie i raschet shtampov [Hot Forming. Design and Calculation of Dies]. Mashgiz Publ., Moscow 1952, 665.
Article reference
Zamaraeva Yu. V., Knysh L. I., Gaisin E. M. Experience in the Application of Simulation of Hot Forging in Production Conditions at the Kumw Jsc // Diagnostics, Resource and Mechanics of materials and structures. -
2023. - Iss. 5. - P. 69-82. - DOI: 10.17804/2410-9908.2023.5.069-082. -
URL: http://eng.dream-journal.org/issues/content/article_410.html (accessed: 11/21/2024).
|