Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

N. B. Pugacheva, T. M. Bykova, E. I. Senaeva, L. S. Goruleva

THERMOPHYSICAL PROPERTIES OF A Cu–Ti–C–B SHS COMPOSITE

DOI: 10.17804/2410-9908.2023.3.050-065

The paper studies the thermophysical properties of a Cu-Ti-C-B composite produced
by self-propagating high-temperature synthesis (SHS) of an initial mixture of copper, titanium, boron carbide (B4C), and carbon powders. The matrix of the composite is a supersaturated solid solution of titanium in a copper lattice with Cu4Ti nanosized particles homogeneously precipitated under cooling. The matrix microhardness is 450 HV 0.1. Particles of titanium carbide (TiC) and titanium diboride (TiB2) resulting from SHS are randomly distributed in the bulk of the composite. The microhardness of the regions with the predominance of TiC particles is 640 HV 0.1, and the microhardness of the regions with the predominance of TiB2 particles is 900 HV 0.1. The average hardness of the composite is 60 HRC. Differential scanning calorimetry demonstrates a unified wide exothermic effect at temperatures ranging from 750 to 1000 °С, with an enthalpy of 148.6 J/g, associated with the exothermic reaction between residual titanium and boron carbide (B4C), which did not react during SHS. The temperature dependences of density, thermal diffusivity, heat capacity, thermal conductivity, and the coefficient of linear thermal expansion are experimentally determined. The particles of the strengthening phases are found to reduce slightly the thermal properties of the composite compared to pure copper. It is shown that annealing at temperatures of 800 and 860°C decreases the level of residual stresses in the composite matrix.

Acknowledgments: The study was financed by the RSF, grant No. 22-29-00188, https://rscf.ru/project/22-29-00188/ “Development of Scientific and Technological Foundations for the Formation of Monolithic SHS Cu–Ti–C–B Composites with Tailored Functional Properties”. The equipment of the Plastomet-riya shared research facilities at the Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, was used in the research.

Keywords: composite, self-propagating high-temperature synthesis, copper matrix, microstructure, heat capaci-ty, thermal conductivity, linear thermal expansion, residual stresses

References:

  1. Osintsev O.E., Fedorov V.N. Med i mednye splavy. Otechestvennye i zarubezhnye marki: spravochnik [Copper and Copper Alloys. Domestic and Foreign Grades: Reference Book]. Moscow, Innovatsionnoe Mashinostroenie Publ., 2016, 360 p. (In Russian).
  2. Han S.Z., Semboshi S., Ahn J.H., Choi E.-A., Cho M., Kadoi Y., Kim K. & Lee J. Accelerating heterogeneous nucleation to increase hardness and electrical conductivity by deformation prior to ageing for Cu-4 at.% Ti alloy. Philosophical Magazine Letters, 2019, vol. 99, iss. 8, pp. 275–283. DOI: 10.1080/09500839.2019.1670879.
  3. Maki K., Ito Y., Matsunaga H., Mori H. Solid-solution copper alloys with high strength and high electrical conductivity. Scripta Materialia, 2013, vol. 68, pp. 777–780. DOI: 10.1016/j.scriptamat.2012.12.027.
  4. Kolachev B.A., Elagin V.N., and Livanov V.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys]. Moscow, MISIS Publ., 2005, 427 p. (In Russian).
  5. Gorsse S., Ouvrard B., Goune M., Poulon-Quintin A. Microstructural design of new high conductivity – high strength Cu-based alloy. Journal of Alloys and Compounds, 2015, vol. 633, pp. 42–47. DOI: 10.1016/j.jallcom.2015.01.234.
  6. Zhu C., Ma A., Jiang J., Li X., Song D., Yang D., Yuan Y., Chen J. Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu–Mg alloys. Journal of Alloys and Compounds, 2014, vol. 582, pp. 135–140. DOI: 10.1016/j.jallcom.2013.08.007.
  7. Volkov A.Yu., Antonov B.D., Patrakov E.I., Volkova E.G., Komkova D.A., Kalonov A.A., Glukhov A.V. Abnormally high strength and low electrical resistivity of the deformed Cu/Mg–composite with a big number of Mg–filaments. Materials & Design, 2020, vol. 185, pp. 108276. DOI: 10.1016/j.matdes.2019.108276.
  8. Merzhanov A.G. Theory of gasless combustion. Arch. Procesow Spalania (Warsaw), 1974, vol. 5, No. 1, pp. 17–39.
  9. Amosov A.P., Borovinskaya I.P., and Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder Technology of Self-Propagating High-Temperature Synthesis of Materials: Textbook]. Moscow, Mashinostroenie–1 Publ., 2007. (In Russian).
  10. Kim J.S., Dudina D.V., Kom J.C., Kwon Y.S., Park J.J., Rhee C.K. Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark–plasma sintering. Journal of Nanoscience and Nanotechnology, 2010, vol. 10, No. 1, pp. 252–257. DOI: 10.1166/jnn.2010.1523.
  11. Hoang O.N.T., Hoang V.N., Kim J.S., Dudina D.V. Structural investigations of TiC–Cu nanocomposites prepared by ball milling and spark plasma sintering. Metals, 2017, vol. 7, iss. 4, pp. 123. DOI: 10.3390/met7040123.
  12. Liang Y.H., Wang H.Y., Yang Y.F., Wang Y.Y., Jiang Q.C. Evolution process of synthesis of TiC in the Cu–Ti–C system. Journal of Alloys and Compounds, 2008, vol. 452, iss. 2, pp. 293–303. DOI: 10.1016/j.jallcom.2006.11.024.
  13. Volkov A.Yu., Kalonov A.A., Komkova D.A. Effect of annealing on the structure, mechanical and electrical properties of Cu/Mg–composite wires. Materials Characterization, 2022, vol. 183, pp. 111606. DOI: 10.1016/j.matchar.2021.111606.
  14. Pugacheva N.B., Nikolin Yu.V., Bykova T.M., Senaeva E.I. Influence of the chemical composition of the matrix on the structure and properties of monolithic SHS composites. Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), 2021, vol. 23, No. 3, pp. 124–138. DOI: 10.17212/1994-6309-2021-23.3-124-138.
  15. Pugacheva N.B., Nikolin Yu.V., Bykova T.M., Senaeva E.I. Structure and properties of a Cu–Ti–C–B composite. Physics of Metals and Metallography, 2022, vol. 123, No. 1, pp. 43–49. DOI: 10.1134/S0031918X22010100.
  16. Pugacheva N.B., Nikolin Yu.V., Senaeva E.I. The structure and wear resistance of a Ti–Ni–Fe–C–B composite. AIP Conf. Proc., 2019, vol. 2176, iss. 1, pp. 020007-1–020007-4. DOI: 10.1063/1.5135119.
  17. Pugacheva N.B.; Bykova T.M., Senaeva E.I. Structure and character of destruction of the Cu–Ti–Al–Ni–Fe–C–B composite after abrasive wear. Physics of Metals and Metallography, 2022, vol. 123, No. 10, pp. 963–970. DOI: 10.1134/S0031918X22600920.
  18. Pugacheva N.B., Orishich A.M, Volkova E.G., Makarov A.V., Senaeva E.I., Malikov A.G. Role of ultra-fine intermetallic particles and martensite in strengthening of AISI 321/Cu/Ti laser welded joint. Material Characterization, 2022, vol. 185, pp. 111702. DOI: 10.1016/j.matchar.2021.111702.
  19. Neimark B.E., ed. Fizicheskie svoistva staley i splavov, primenyaemykh v energetike [Physical Properties of Steels and Alloys Used in Power Engineering: Reference Book]. Moscow, Leningrad, Energiya Publ., 1967, 240 p. (In Russian).
  20. Golovin V.A., Krucher G.N. Listy i lenty iz tyazhelykh tsvetnykh metallov [Sheets and Tapes Made of Heavy Nonferrous Metals]. Moscow, Metallurgiya Publ., 1985, 384 p. (In Russian).
  21. Goldschmidt H.J. Interstitial Alloys, London, Butterworths, 1967, 632 p.


PDF      

Article reference

Thermophysical Properties of a Cu–ti–c–b Shs Composite / N. B. Pugacheva, T. M. Bykova, E. I. Senaeva, L. S. Goruleva // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 3. - P. 50-65. -
DOI: 10.17804/2410-9908.2023.3.050-065. -
URL: http://eng.dream-journal.org/issues/content/article_401.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru