G. N. Gusev, A. A. Baryakh, I. N. Shardakov, R. V. Tsvetkov
ENSURING SAFE OPERATION OF MONOLITHIC STRUCTURES IN UNDERMINED AREAS
DOI: 10.17804/2410-9908.2023.2.006-018 In order to ensure safe operation of buildings in undermined areas, it is necessary to take into account the influence of loads extrinsic to typical structures. The solution of the generalized boundary value problem on the evaluation of the stress-strain state (SSS) of the building–foundation–soil system with due regard for the complete geometry and physically nonlinear behavior of all the elements is inexpedient since it is complicated by the large dimensionality of the problem. This paper discusses an approach allowing the state of monolithic reinforced concrete building structures located in an undermined area to be estimated by solving boundary value problems on different scales, from modeling the whole system in an elastic formulation to modeling joints between load-bearing members (columns and floors) in a nonlinear formulation for concrete and reinforcement. In these problems, strain energy is taken as the parameter characterizing the deformation process at critical deformation stages and connecting the boundary value problems. The obtained loading diagrams for a unit and the evaluation of the SSS of the whole structure enable one to find the values of maximum permissible horizontal soil deformations in the vicinity of the foundation, at which the bearing members reach the SSS preceding the loss of bearing capacity.
Acknowledgment: The work was performed under the state assignment to the Perm Federal Research center, UB RAS, theme No. AAAA-A19-19012290100-8. Keywords: undermined area, reinforced concrete structure, numerical model, strain energy References:
- Gusev G.N., Epin V.V., Tsvetkov R.V. The results of long-term observations of uneven settlements of buildings located on the territory of the Verkhnekamskoye potash deposit in Berezniki. Izvestiya Uralskogo Gosudarstvennogo Gornogo Universiteta, 2022, No. 3 (67), pp. 80–89. (In Russian).
- Nesterova V.Yu., Barsukov I.V., Stryukov Yu.N. Evaluation of influences of underground mining on surface buildings and constructions in coal fields. Ugol, 2014, No. 10 (1063), pp. 29–34. (In Russian).
- Samsonov S., Baryakh A. Estimation of deformation intensity above a flooded potash mine near Berezniki (Perm Krai, Russia) with SAR interferometry. Remote Sensing, 2020, vol. 12 (19), 3215. DOI: 10.3390/rs12193215.
- Baryakh A.A., Tenison L.O., Samodelkina N.A. Assessment of horizontal deformations in undermined areas. Mining Informational and Analytical Bulletin, 2021, vol. 11, pp. 5–18. (In Russian). DOI: 10.25018/0236_1493_2021_11_0_5.
- Kharisova O.D. Monitoring of the spatial deformation processes of undermined structures. Problemy Nedropolzovaniya, 2018, vol. 3, pp. 81–88. (In Russian). DOI: 10.25635/2313-1586.2018.03.081.
- Ukazaniya po dopustimym usloviyam podrabotki ekspluatiruyemykh zdaniy i sooruzheniy na Verkhnekamskom mestorozhdenii kaliynykh soley (s izmeneniyami ot 2008) [Instructions on the Permissible Conditions for Undermining Operated Buildings and Structures at the Verkhnekamskoye Potash Salt Deposit (as Amended in 2008)]. St. Petersburg, 2008, 45 p. (In Russian).
- SP 21.13330.2012. (In Russian). https://www.gostrf.com/normativ/1/4293801/4293801657.htm
- TSN 22-301-98. (In Russian). https://www.gostrf.com/normativ/1/4294850/4294850011.htm
- Rukovodstvo po proektirovaniyu zdaniy i sooruzheniy na podrabatyvayemykh territoriyakh. Chast II. Promyshlennyye i grazhdanskie zdaniya [Guidelines for the Design of Buildings and Structures in Undermined Territories. Part II. Industrial and Civil Buildings]. Moscow, Stroyizdat Publ., 1986, 304 p. (In Russian).
- Razvodovsky D.E. Admissible deformations of the existing building. Vestnik NTS “Stroitelstvo”, 2017, vol. 13, pp.106–121. (In Russian).
- Kashevarova G.G., Son M.P. Method of defining the limiting permissible deformations of panel buildings, exploited at the subsided area. Bulletin of the South Ural State University. Series Construction Engineering and Architecture, 2013, vol. 13, No. 1, pp. 22–26. (In Russian).
- Gusev G.N., Shardakov I.N., Baryah A.A., Glot I.O. Deformation interaction of panel residential buildings with the ground in the zone of technogenic impact. Computational Continuum Mechanics, 2023, vol. 13 (1), pp. 36–45. (In Russian). DOI: 10.7242/1999-6691/2023.16.1.3.
- Yarkin V.V., Lobacheva N.G. Modeling of non-uniform deformations of the base of foundations in complex engineering and geological conditions. Zhilishchnoe Stroitelstvo, 2022, No. 12, pp. 15–25. (In Russian). DOI: 10.31659/0044-4472-2022-12-15-25.
- Tatarkin A.V. Evaluation of the “foundation-soil base” system. Geotekhnika, 2019, vol. 11 (3), pp. 52–62. (In Russian). DOI: 10.25296/2221-5514-2019-11-3-52-62.
- Kolchunov V.I., Martynenko D.V. Deformation and cracking of the platform joint of the prefabricated-monolithic RC building frame. Stroitelstvo i Rekonstruktsiya, 2020, vol. 4, pp. 38–47. (In Russian). DOI: 10.33979/2073-7416-2020-90-4-38-47.
- Fan D., Iliushchenko T.A., Amelina M.A. Resistance of reinforced concrete frames of multi-storey buildings with indirect reinforcement in over-extreme limit states. Stroitelstvo i Rekonstruktsiya, 2022, vol. 3, pp. 87–97. (In Russian). DOI: 10.33979/2073-7416-2022-101-3-87-97.
- Willam K.J., Warnke E.P. Constitutive model for the triaxial behavior of concrete. In: Proceedings of the International Association for Bridge and Structural Engineering, Bergamo, Italy, 1975, vol. 19, pp. 1–30.
- SP 63.13330.2018. (In Russian). https://meganorm.ru/Index2/1/4293732/4293732352.htm
- Stupishin L.Yu. Progressive limit state at critical levels of internal potential energy of deformation. Vestnik MGSU, 2021, vol. 16 (10), pp. 1324–1336. (In Russian). DOI: 10.22227/1997-0935.2021.10.1324-1336.
- Stupishin L.Yu. Limit state of building structures and critical energy levels. Promyshlennoe i Grazhdanskoe Stroitelstvo, 2018, No. 10, pp. 102–106. (In Russian).
Article reference
Ensuring Safe Operation of Monolithic Structures in Undermined Areas / G. N. Gusev, A. A. Baryakh, I. N. Shardakov, R. V. Tsvetkov // Diagnostics, Resource and Mechanics of materials and structures. -
2023. - Iss. 2. - P. 6-18. - DOI: 10.17804/2410-9908.2023.2.006-018. -
URL: http://eng.dream-journal.org/issues/content/article_394.html (accessed: 12/21/2024).
|