Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

L. S. Goruleva, S. M. Zadvorkin, A. N. Mushnikov

EFFECT OF PLASTIC DEFORMATION ON THE PHASE COMPOSITION AND ELECTROMAGNETIC CHARACTERISTICS OF THE 321N AUSTENITIC STEEL (08Kh18N10T)

DOI: 10.17804/2410-9908.2022.6.095-106

The changes in the phase composition and electromagnetic properties of the 321N chromium-nickel austenitic steel under plastic deformation by uniaxial tension are studied. As strain increases from 0 to 0.37, the content of ferromagnetic α′-martensite in the steel increases monotonically to 60%. The electrical resistivity and the initial magnetic permeability increase monotonically by factors of 1,25 and 18, respectively. To monitor the strain state and the content of α'-martensite in products made of the 321N steel, it is preferable to use initial magnetic permeability rather than electrical resistance. The skin layer thickness of the deformed 321N steel for frequencies from 5 to 1000 kHz is calculated from the experimental values of initial magnetic permeability and electrical resistivity. Eddy current diagnostics of the state of the surface of products made of this steel, hardened by surface plastic deformation, is proposed to be performed at frequencies ranging between 100 and 200 kHz.

Acknowledgment: The work was performed under state assignment No. AAAA-A18-118020790148-1. The study used the equipment of the Plastometriya shared research facilities. We appreciate the assistance of R. A. Savrai, P. A. Skorynina, and I. A. Zabolotskikh, mem-bers of the laboratory of construction materials science, IES UB RAS, for providing us with test spec-imens.

Keywords: metastable austenitic steels, uniaxial tension, phase composition, skin layer thickness, eddy current method

References:

  1. Filippov M.A., Litvinov V.S., Nemirovskiy Yu.R. Stali s metastabilnym austenitom [Steels with metastable austenite]. Moscow, Metallurgiya Publ., 1988, 255 p. (In Russian).
  2. Borgioli F. From austenitic stainless steel to expanded austenite-S phase: formation, characteristics and properties of an elusive metastable phase. Metals, 2020, vol. 10, iss. 2, No. 187, pp. 1–46. DOI: 10.3390/met10020187.
  3. Basak S.,·Sharma S.K., Mondal M., Sahu·K.K., Gollapudi S., Majumdar J.D., Hong S.T. Electron beam surface treatment of 316L austenitic stainless steel: improvements in hardness, wear, and corrosion resistance. Metals and Materials International, 2020, vol. 27, iss. 5, pp. 953–961. DOI: 10.1007/s12540-020-00773-y.
  4. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Materials Science and Engineering R-Reports, 2009, vol. 65, iss. 4–6, pp. 39–104. DOI: 10.1016/j.mser.2009.03.001.
  5. Savrai R.A., Makarov A.V., Malygina I.Yu., Rogovaya S.A., Osintseva A.L. Improving the Strength of the Aisi 321 Austenitic Stainless Steel by Frictional Treatment. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 5, pp. 43–62. DOI: 10.17804/2410-9908.2017.5.043-062.
  6. Makarov A.V., Skorynina P.A., Osintseva A. L., Yurovskikh A.S., Savrai R. A. Improving the tribological properties of austenitic 12KH18N10T steel by nanostructuring frictional treatment. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty), 2015, No. 4 (69), pp. 80–92. DOI: 10.17212/1994-6309-2015-4-80-92. (In Russian).
  7. Khaksaran A., Taghiabadi R., Jafarzadegan M. Tribological properties of surface friction hardened AISI 316L steel. Transactions of the Indian Institute of Metals, 2021, 74 (8), pp. 1979–1989. DOI: 10.1007/s12666-021-02306-6.
  8. Makarov A.V., Skorynina P.A., Yurovskikh A.S., Osintseva A.L. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel. The Physics of Metals and Metallography, 2017, vol. 118, No. 12, pp. 1225–1235. DOI: 10.1134/S0031918X17120092.
  9. Takaki S., Fukunaga K., Syarif J., Tsuchiyama T. Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel. Mater. Trans., 2004, 45 (7), pp. 2245–2251. DOI: 10.2320/matertrans.45.2245.
  10. Wu Y., Guelorget B., Sun Z., Déturche R., Retraint D. Characterization of gradient properties generated by SMAT for a biomedical grade 316L stainless steel. Materials Characterization, 2019, vol. 155, pp. 109788. DOI: 10.1016/j.matchar.2019.109788.
  11. Makarov A.V., Savray R.A., Skorynina P.A., Volkova E.G. Development of Methods for Steel Surface Deformation Nanostructuring. Metal Science and Heat TreatmentThe Physics of Metals and Metallography, 2020, vol. 62, pp. 61–69. DOI: 10.1007/s11041-020-00529-w.
  12. Savrai R.A., Kolobylin Y.M., Volkova E.G. Micromechanical characteristics of the surface layer of metastable austenitic steel after frictional treatment.  2021, vol. 122, No. 8, pp. 800–806. DOI: 10.1134/S0031918X21080123.
  13. Savrai R.A., Kogan L.K. Effect of Hardening Frictional Treatment on Features of Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact Fatigue Loading. Russian Journal of Nondestructive Testing, 2022, vol. 58, pp. 722–731. DOI: 10.1134/S1061830922080095.
  14. Silva V.M.A., Camerini C.G., Pardal J.M., De Blаs J.G., Pereira G.R. Eddy current characterization of cold-worked AISI 321 stainless steel. Journal of Materials Research and Technology, 2018, vol. 7, iss. 3, pp. 395–401. DOI: 10.1016/j.jmrt.2018.07.002.
  15. Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI stainless steel. Journal of Materials Engineering and Performance, 2012, vol. 21, iss. 8, pp. 1772–1776. DOI: 10.1007/s11665-011-0080-4.
  16. Gorkunov E.S., Zadvorkin S.M., Mitropolskaya S.Yu., Vichuzhanin D.I., Solov’ev K.E. Change in magnetic properties of metastable austenitic steel due to elastoplastic deformation. Metal Science and Heat Treatment, 2009, vol. 51, pp. 423–428. DOI: 10.1007/S11041-010-9185-X.
  17. Mirkin L.I. Rentgenostrukturnyj kontrol mashinostroitelnykh materialov: spravochnik [X-ray structural control of machine-building materials]. Moscow, MGU Publ., 1976, 134 p. (In Russian).
  18. Dorofeev A.L., Kazamanov Yu.G., Cherenkova Z.V. Metod vikhrevykh tokov (induktsionnaya strukturoskopiya, defektoskopiya i tolshchinometriya) [Eddy current method (induction structroscopy, non-destructive testing and thickness measurement)]. Moscow, Mashinostroenie Publ., 1969, 89 p. (In Russian).
  19. Bobrov A.L., Vlasov K.V., Bekher S.A. Osnovy vikhretokovogo nerazrushaiushchego kontrolia: uchebnoe posobie [Principles of eddy current non-destructive testing: textbook]. Novosibirsk, Izd-vo SGUPS Publ., 2019. 98 p. (In Russian).
  20. Vychuzhanin D.I., Makarov A.V., Smirnov S.V., Pozdeeva N.A., Malygina I.Y. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter. Journal of Machinery Manufacture and Reliability, 2011, vol. 40, No. 6, p. 554–560. DOI: 10.3103/S1052618811050190.
  21. Savrai R.A., Osintseva A.L. Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests. Materials Science and Engineering: A, 2021, vol. 802, pp. 140679. DOI: 10.1016/j.msea.2020.140679.


PDF      

Article reference

Goruleva L. S., Zadvorkin S. M., Mushnikov A. N. Effect of Plastic Deformation on the Phase Composition and Electromagnetic Characteristics of the 321n Austenitic Steel (08kh18n10t) // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 6. - P. 95-106. -
DOI: 10.17804/2410-9908.2022.6.095-106. -
URL: http://eng.dream-journal.org/issues/content/article_387.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru