Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

E. V. Abdulmenova, S. P. Buyakova, S. N. Kulkov

INCREASING HYDROGEN SORPTION BY Ti2Ni POWDER USING MECHANOCHEMICAL ALLOYING

DOI: 10.17804/2410-9908.2022.3.025-035

A method has been developed to increase hydrogen sorption by Ti2Ni powder, which consists in mechanochemical alloying by titanium of Ti-Ni powder near the equiatomic composition. This method allows the hydrogen content in the powder material to be increased several times. It is possible to use the developed powder material for the safe storage and transportation of hydrogen in the metal hydride with a high hydrogen content, with reversible adsorption of hydrogen, in comparison with the storage and transportation of hydrogen in compressed and liquid form. The developed method is simple to implement and low-cost; therefore, it is of economic and practical interest. For mechanochemical alloying, a high-intensity planetary ball mill was used, with a drum rotation speed of 1820 rpm and a processing time of 300 seconds. It is shown that, after mechanochemical alloying, the powder Ti-Ni (85 wt%) – Ti (15 wt%) powder consisted of TiNi in two modifications, namely B2 and B19`, and two Ti2Ni phases with different lattice parameters. The existence of two Ti2Ni phases is due to both the inheritance of this phase from the initial Ti-Ni powder (Ti2Ni(I)), and its formation during the interaction of titanium with TiNi (B2, B19`) in the process of mechanochemical alloying (Ti2Ni(II)). The Ti2Ni (II) phase formed by mechanochemical alloying is more prone to interact with hydrogen with the formation of Ti2NiHx hydride than the Ti2Ni (I) phase present in Ti-Ni powder before alloying. The lattice parameter of the Ti2Ni (II) phase increases by 17.6 % during hydrogenation and corresponds to Ti2NiH2.8 hydride; this result exceeds the change in the cell volume of Ti2Ni obtained by other methods.

Acknowledgment: The study was performed under the government’s statements of work for ISPMS SB RAS (Project FWRW-2021-0005 and FWRW-2021-0009).

Keywords: Ti2Ni, mechanochemical alloying, Ti, heat treatment, electrochemical hydrogenation

References:

  1. Klell M., Eichlseder H., Trattner A. Wasserstoff in der Fahrzeugtechnik. Wiesbaden, Springer Fachmedien Wiesbaden, 2018, 337 p. DOI: 10.1007/978-3-658-20447-1.
  2. Astafurova E.G., Melnikov E.V., Astafurov S.V., Ratochka I.V., Mishin I.P., Maier G.G., Moskvina V.A., Zakharov G.N., Smirnov A.I., Bataev V.A. Hydrogen Embrittlement of Austenitic Stainless Steels with Ultrafine-Grained Structures of Different Morphologies. Physical Mesomechanics, 2019, vol. 22, pp. 313–326. DOI: 10.1134/s1029959919040076.
  3. Balcerzak M., Nowak M., Jurczyk M. Hydrogenation and electrochemical studies of La–Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 1436–1443. DOI: 10.1016/j.ijhydene.2016.05.220.
  4. Schirowski M, Abellán G., Nuin E., Pampel J., Dolle C., Wedler V., Fellinger T.-P., Spiecker E., Hauke F., Hirsch A. Fundamental insights into the reductive covalent cross-linking of single-walled carbon nanotubes. Journal of the American Chemical Society, 2018, vol. 140, pp. 3352–3360. DOI: 10.1021/jacs.7b12910.
  5. Tanui P.K., Namwetako J.S., Cherop H.K., Khanna K.M. Hydrogen Storage in Metal Organic Frameworks. World Scientific News, 2022, vol. 169, pp. 121–135. DOI: 10.1007/978-3-662-53514-1_5.
  6. Mansouri M., Shtender V., Tunsu C., Yilmaz D., Messaoudi O., Ebin B., Sahlberg M., Petranikova M. Production of AB5 materials from spent Ni-MH batteries with further tests of hydrogen storage suitability. Journal of Power Sources, 2022, vol. 539, pp. 231459. DOI: 10.1016/j.jpowsour.2022.231459.
  7. Cui N., He P., Luo J.L. Magnesium-based hydrogen storage materials modified by mechanical alloying. Acta Materialia, 1999, vol. 47, pp. 3737–3743. DOI: 10.1016/S1359-6454(99)00249-9.
  8. Dell'Era A., Pasquali M., Vecchio Ciprioti S., Lupi C., Brotzu A., Mura F., Tuffi R. Synthesis and characterization of a MgNi-RE alloy for hydrogen storage. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 26333–26342. DOI: 10.1016/j.ijhydene.2017.08.207.
  9. Zhang J., Zhu Y., Yao L., Xu C., Liu Y., Liab L. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, vol. 782, pp. 796–823. DOI: 10.1016/j.jallcom.2018.12.217.
  10. Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials, 1996, vol. 17, pp. 2003–2008. DOI: 10.1016/0142-9612(95)00352-5.
  11. Guiose B., Cuevas F., Décamps B., Percheron-Guégan A. Solid-gas and electrochemical hydrogenation properties of pseudo-binary (Ti,Zr)Ni intermetallic compounds. International Journal of Hydrogen Energy, 2008, vol. 33, pp. 5795–5800. DOI 10.1016/j.ijhydene.2008.07.056.
  12. Zhao X., Li J., Yao Y., Ma L., Shen X. Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy. RSC Advances, 2012, vol. 2, pp. 2149–2153. DOI: 10.1039/C2RA00846G.
  13. Buchner H., Gutjahr M., Beccu K.-D., Säufferer H. Wasserstoff in intermetallischen phasen am beispiel des systems titannickel-wasserstoff. Zeitschrift Fur Metallkunde, 1972, vol. 63, pp. 497–500.
  14. Luan B., Cui N., Zhao H., Liu H.K., Dou S.X. Mechanism of early capacity loss of Ti2Ni hydrogen-storage alloy electrode. Journal of Power Sources, 1995, vol. 55, pp. 101–106. DOI: 10.1016/0378-7753(94)02162-V.
  15. Luan B., Kennedy S.J., Liu H.K., Dou, S.X. On the charge/discharge behavior of Ti2Ni electrode in 6 M KOH aqueous and deuterium oxide solutions. Journal of Alloys and Compounds, 1998, vol. 267, pp. 224–230. DOI: 10.1016/s0925-8388(97)00461-1.
  16. Fokin V.N., Fokina E.E., Korobov I.I., Tarasov B.P. Hydriding of Intermetallic Compound Ti2Ni. Russian Journal of Inorganic Chemistry, 2014, vol. 59, pp. 1073–1076. DOI: 10.1134/S0036023614100076.
  17. Geng M., Han J., Feng F., Northwood D.O. Hydrogen-absorbing alloys for the NICKEL–METAL hydride battery. International Journal of Hydrogen Energy, 1998, vol. 23, pp. 1055–1060. DOI: 10.1016/S0360-3199(98)00020-2.
  18. Anik M., Kucukdeveci N. Discharging characteristics of CoB nano powders. International Journal of Hydrogen Energy, 2013, vol. 38, pp. 1501–1509. DOI: 10.1016/j.ijhydene.2012.11.090.
  19. Hosni B., Li X., Khaldi C., ElKedim O., Lamloumia J. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling. Journal of Alloys and Compounds, 2014, vol. 615, pp. 119–125. DOI: 10.1016/j.jallcom.2014.06.152.
  20. Zadorozhnyi V.Y., Skakov Y.A. & Milovzorov G.S. Appearance of metastable states in Fe-Ti and Ni-Ti systems in the process of mechanochemical synthesis. Metal Science and Heat Treatment, 2008, vol. 50, art. No. 404. DOI: 10.1007/s11041-008-9078-4.
  21. Abdulmenova E.V., Kulkov S.N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation. International Journal of Hydrogen Energy, 2021, vol. 46, pp. 823–836. DOI: 10.1016/j.ijhydene.2020.09.171.
  22. Nelson J.B., Riley D.P. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proceedings of the Physical Society, 1945, vol. 57, pp. 160–177. DOI: 10.1088/0959-5309/57/3/302.
  23. Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. In: Nachrichten von der Königl Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1918, vol. 2, pp. 98–100.
  24. Grigoriev M.V., Molchunova L.M., Buyakova S.P., Kulkov S.N. Effect of mechanical treatment on manner, structure and properties of nonsto-ichiometric titanium carbide powder. Russian Physics Journal, 2013, vol. 56, no. 7/2, pp. 206–210. (In Russian).
  25. Avvakumov Ye.G. Mekhanicheskiye metody aktivatsii khimicheskikh protsessov [Mechanical Methods for Activation of Chemical Processes]. Novosibirsk, Nauka Publ., 1986, 305 p. (In Russian).
  26. Hiemenz P.C. Principles of Colloid and Surface Chemistry, New York, Marcel Dekker Publisher, 1997, 650 p.
  27. Buyakova S.P., Kul’kov S.N. Effect of mechanical processing of ultrafine ZrO2+3wt%MgO powder on the microstructure of ceramics produced from it. Inorganic Materials, 2010, vol. 46, pp. 1155–1158. DOI: 10.1134/S0020168510100249.
  28. Anikeev S.G., Kaftaranova M.I., Khodorenko V.N., Artyukhova N.V., Garin A.S., Gyunter V.E. Effect of titanium additions on structural aspects of porous TiNi-based materials prepared by diffusion sintering. Inorganic Materials, 2020, vol. 56, No. 9, pp. 918–923. DOI: 10.1134/S0020168520090022.
  29. Berdonosova E.A., Zadorozhnyy V.Y., Zadorozhnyy M.Y., Geodakian K.V., Zheleznyi M.V., Tsarkov A.A., Klyamkin S.N. Hydrogen storage properties of TiFe-based ternary mechanical alloys with cobalt and niobium. A thermochemical approach. International Journal of Hydrogen Energy, 2019, vol. 44, pp. 29159–29165. DOI: 10.1016/j.ijhydene.2019.03.057.
  30. Zhang Z., Elkedim O., Balcerzak M., Jurczyk M., Chassagnonc R. Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNix ternary alloys. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 23751–23758. DOI: 10.1016/J.IJHYDENE.2017.03.051.
  31. In: Massalski T.B., Murray J.L., Bennett L.H., Baker H., eds. Binary Alloy Phase Diagrams. ASM International, Materials Park, OH, 1990, vol. 3, pp. 2874–2876.
  32. Yurko G.A., Barton J.W., Gordon Parr J. The crystal structure of Ti2Ni. Acta Crystallographica, 1959, vol. 12, pp. 909–911. DOI: 10.1107/S0365110X59002559.
  33. Pelton A., Trépanier C., Gong X.Y., Wick A., Chen K.C. Structural and diffusional effects of hydrogen in TiNi. In: T.W. Duerig, A. Pelton, eds. Proceedings of SMST-2003, Monterey, California, Materials Park, 2003, pp. 2–9.
  34. Saito T., Yokoyama, T., Takasaki, A. Hydrogenation of TiNi shape memory alloy produced by mechanical alloying. Journal of Alloys and Compounds, 2011, vol. 509, pp. S779–S781. DOI: 10.1016/j.jallcom.2010.10.128.


PDF      

Article reference

Abdulmenova E. V., Buyakova S. P., Kulkov S. N. Increasing Hydrogen Sorption by Ti2ni Powder Using Mechanochemical Alloying // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 3. - P. 25-35. -
DOI: 10.17804/2410-9908.2022.3.025-035. -
URL: http://eng.dream-journal.org/issues/content/article_360.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru