Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva


DOI: 10.17804/2410-9908.2015.3.083-097

A comparative analysis of the structure, phase composition, microhardness, tribological performances (wear intensity, friction coefficient, specific wearing work) and wear mechanisms in fixed abrasive tests (abrasives with different hardness, namely, corundum Al2O3 with ~ HV 2000 and silicon carbide with ~ HV 3000) and under dry sliding friction against die steel has been carried out for a NiCrBSi coating and a NiCrBSi–TiC (with 25% wt. TiC addition) composite coating obtained on the surface of steel by gas powder laser cladding. The high-strength frame of coarse titanium carbide particles in the composite coating structure has a significant positive impact on resistance to abrasive wear and sliding friction, and the effectiveness greatly depends on the contact loading conditions and wear mechanism realized.

Keywords: laser cladding, NiCrBSi – TiC composite coating, structure, microhardness, abrasive wear, sliding friction


1. Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye metallomatrichnye kompozitsionnye materialy: uchebnoe posobie [Constructional metal matrix composite materials: educational book]. Moscow, MGTU im. N. E. Baumana Publ., 2015. 141 p. (In Russian).
2. Kurganova Yu.A. Development prospects of commercial metal matrix composite materials. Servis v Rossii i za rubezhom, 2012, vol. 30, no. 3, pp. 235–240. (In Russian).
3. Yan H., Zhang P., Yu Zh., Lu Q., Yang Sh., Li Ch. Microstructure and tribological properties of laser-clad Ni–Cr/TiB2 composite coatings on copper with the addition of CaF2. Surface and Coatings Technology, 2012, vol. 206, pp. 4046–4053.
4. Nurminen J., Näkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. Journal of Refractory Metals and Hard Materials, 2009, vol. 27, pp. 472–478.
5. Anandkumar R., Almeida A., Vilar R. Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding. Surface and Coatings Technology, 2011, vol. 205, pp. 3824–3832.
6. Tobar M.J., Álvarez C., Amado J.M., Rodríguez G., Yánez A. Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel. Surface and Coatings Technology, 2006, vol. 200, pp. 6313–6317.
7. Weng F., Chen Ch., Yu H. Research status of laser cladding on titanium and its alloys: A review. Materials and Design, 2014, vol. 58, pp. 412–425.
8. Makarov A.V., Savrai R.A., Osintseva A.L., Malygina I.Yu. The influence of the chemical composition on the tribological performances of Cr-Ni coatings obtained by gas powder laser cladding. Izvestiya Chelyabinskogo nauchnogo tsentra, 2009, no. 2 (44), pp. 28–33. (In Russian).
9. Soboleva N.N., Malygina I.Yu., Osintseva A.L., Pozdejeva N.A. The influence of the microstructure and phase composition on tribological performances of NiCrBSi coatings. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy Akademii Nauk, 2011, vol. 13, no. 4 (3), pp. 869–873. (In Russian).
10. Cai B., Tan Y.-F., He L., Tan H., Gao L. Tribological properties of TiC particles reinforced Ni-based alloy composite coatings. Transactions of Nonferrous Metals Society of China, 2013, vol. 13, pp. 1681–1688.
11. Yang J., Liu F., Miao X., Yang F. Influence of laser cladding process on the magnetic properties of WC–FeNiCr metal–matrix composite coatings. Journal of Materials Processing Technology, 2012, vol. 212, pp. 1862–1868.
12. Niranatlumpong P., Koiprasert H. Phase transformation of NiCrBSi–WC and NiBSi–WC arc sprayed coatings. Surface and Coatings Technology, 2011, vol. 206, pp. 440–445.
13. Guo Ch., Chen J., Zhou J., Zhao J., Wang L., Yu Y., Zhou H. Effects of WC—Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating. Surface and Coatings Technology, 2012, vol. 206, pp. 2064–2071.
14. Liyanage T., Fisher G., Gerlich A.P. Microstructures and abrasive wear performance of PTAW deposited Ni–WC overlays using different Ni-alloy chemistries. Wear, 2012, vol. 274–275, pp. 345–354.
15. Si S.-H., Yuan X.-M., Liu Y.-L., He Y.-Z., Keesam Sh. Effect of Laser Power on Microstructure and Wear Resistance of WCP/Ni Cermet Coating. Journal of Iron and Steel Research, International, 2006, vol. 13, Iss. 3, pp. 74–78.
16. Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., Izadi H., Gol A.K., Wood G. Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 2014, vol. 16, pp. 4–25.
17. Zikin A., Antonov M., Hussainova I., Katona L., Gavrilovic´ A. High temperature wear of cermet particle reinforced NiCrBSi hardfacings. Tribology International, 2013, vol. 98, pp. 45–55.
18. Li Q., Song G.M., Zhang Y.Z., Lei T.C., Chen W.Z.. Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC. Wear, 2003, vol. 254, iss. 3–4, pp. 222–229.
19. Chao M.-J., Wang W.-L., Liang E.-J., Ouyang D. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding. Surface and Coatings Technology, 2008, vol. 202, pp. 1918–1922.
20. Zikin A., Badisch E., Hussainova I., Tomastik C., Danninger H. Characterisation of TiC—NiMo reinforced Ni-based hardfacing. Surface and Coatings Technology, 2013, vol. 236, pp. 36–44.
21. Wang X.H., Zhang M., Liu X.M., Qu S.Y., Zou Z.D. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding. Surface and Coatings Technology, 2008, vol. 202, pp. 3600–3606.
22. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. The formation of a NiCrBSi–TiC composite coating with increased abrasive wear resistance by gas powder laser cladding. Uprochnyayushchie tekhnologii i pokrytiya, 2013, no. 11 (107), pp. 38–44. (In Russian).
23. Sun R.L., Lei Y.W., Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser. Surface and Coatings Technology, 2009, vol. 203, pp. 1395–1399.
24. Lei Y., Sun R., Tang Y., Niu W. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings. Optics and Laser Technology, 2012, vol. 44, pp. 1141–1147.
25. Lei Y., Sun R., Lei J., Tang Y., Niu W. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. Optics and Lasers in Engineering, 2010, vol. 48, pp. 899–905.
26. Duraiselvam M., Galun R., Wesling V., Mordike B.L., Reiter R., Oligmüller J., Buvanashekaran G. Cavitation erosion resistance of Ti6Al4V laser alloyed with TiC-reinforced dual phase intermetallic matrix composites. Materials Science and Engineering A, 2007, vol. 454–455, pp. 63–68.
27. Tan Y.-F., He L., Wang X.-L., Hong X., Wang W.-G. Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings. Transactions of Nonferrous Metals Society of China, 2014, vol. 24, pp. 2566–2573.
28. Cai B., Tan Y.-F., Tu Y.-Q., Wang X.-L., Tan H. Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles. Transactions of Nonferrous Metals Society of China, 2011, vol. 21, pp. 2426–2432.
29. Dawei Z., Li T., Lei T.C. Laser cladding of Ni–Cr3C2/(Ni+Cr) composite coating. Surface and Coatings Technology, 1988, vol. 110, pp. 81–85.
30. Makarov A.V., Gorkunov E.S., Malygina I.Yu., Kogan L.Kh., Savrai R.A., Osintseva A.L. Eddy-current testing of the hardness, wear resistance and thickness of coatings prepared by gaspowder laser cladding. Russian Journal of Nondestructive Testing, 2009, vol. 45, iss. 11, pp 797–805.
31. Makarov A.V., Pozdejeva N.A., Savrai R.A., Yurovskikh A.S., Malygina I.Yu. Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment. Journal of Friction and Wear, 2012, vol. 33, no. 6, pp. 433–442.
32. Khrushchov M.M., Babichev M.A. Abrazivnoye iznashivanie [Abrasive wear]. Moscow, Nauka Publ., 1970. 252 p. (In Russian).
33. Kragelsky I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos [A basis for friction and wear calculation]. Moscow, Mashinostroenie Publ., 1977. 526 p. (In Russian).
34. Kragelsky I.V. Trenie i iznos [Friction and wear]. Moscow, Mashinostroenie Publ., 1968, 480 p. (In Russian).
35. Golego N.L. Skhvatyvanie v mashinakh i metody ego ustraneniya [Seizure in machines and methods for its elimination]. Kiev, Tekhnika Publ., 1966, 231 p. (In Russian).
36. Nosovsky I.G. Vliyanie gazovoy sredy na iznos metallov [The effect of a gaseous medium on metal wear]. Kiev, Tekhnika Publ., 1968, 181 p. (In Russian).
37. Kostatsky B.I., Nosovsky I.G., Karaulov A.K. et al. Poverkhnostnaya prochnost materialov pri trenii [Surface strength of materials during friction]. Kiev, Tekhnika Publ., 1976. 296 p. (In Russian).


Article reference

The Tribological Performances of a Nicrbsi – Tic Laser-Clad Composite Coating under Abrasion and Sliding Friction / A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. - 2015. - Iss. 3. - P. 83-97. -
DOI: 10.17804/2410-9908.2015.3.083-097. -
URL: http://eng.dream-journal.org/issues/content/article_33.html
(accessed: 06/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru