V. P. Shveikin
FATIGUE FAILURE OF NATURAL COMPOSITE MATERIALS
DOI: 10.17804/2410-9908.2019.6.058-067 The paper studies the fatigue characteristics of samples of low-carbon low-alloy steels, normalized and cooled from the intercritical temperature range at different rates. Fractographs of the fracture surfaces of the samples after fatigue tests are presented. The fatigue fracture surfaces are analyzed in detail. It is concluded that biphasic ferritic-martensitic steels have a higher resistance to fatigue failure as compared to steels with the ferrite-pearlite structure.
Acknowledgment: The study was performed with the use of the equipment installed at the Plastometriya collective use center affiliated to the IES UB RAS, Ekaterinburg, under the Arctic program of UB RAS, project BP 18-9-1-20. Keywords: low-carbon low-alloy steels, ferritic-martensitic steels, fracture surface, fatigue failure, ferrite-pearlite structure References: 1. Botvina L.R. Kinetika razrusheniya konstruktsionnykh materialov [Fracture Kinetics of Construction Materials]. Moscow, Nauka Publ., 1989. 230 p. (In Russian).
2. Kotsanda S. Ustalostnoe rastreskivanie metallov [Fatigue Cracking of Metals, transl. Pol.]. Moscow, Metallurgiya Publ., 1990. (In Russian).
3. Bronfin B.M., Shveikin V.P., Shifman A.Z. Influence of type of microstructure on fatigue resistance and fracture of low-carbon, low-alloy steel. Steel in the USSR, vol. 16, iss. 10, pp. 494-496.
4. Goritskii V.M. and Terent’ev V.F. Struktura i ustalostnoe razrushenie metallov [Structure and Fatigue-Induced Failure of Metals]. Moscow, Metallurgiya Publ., 1980. (In Russian).
5. Wasen J., Hamberg K., Karlsson B. The influence of prestrain and ageing on fatigue crack growth in a Dual-Phase Steel. Scripta Metallurgica, 1984, vol. 18, no. 3, pp. 621–624.
6. Pietrowski R., Gasse W.F., and Kenny W.D. Fatigue Properties of Renitrogenized and Dual Phase Steels. In: International Congress and Exposition, Detroit, Michigan, February 28–March 4, 1983: SAE Technical Paper Series, 1983, no. 2, pp. 1–11.
7. Romaniv O.N. Vyazkost razrusheniya konstruktsionnykh staley [Fracture Toughness of Structural Steels]. Moscow, Metallurgiya Publ., 1979. 176 p. (In Russian).
8. Potemkin A., Vikylov A., Nikitin D. Fatigue failure of materials from a position of various theories. Nauchno-metodicheskiy Elektronniy Zhurnal “Kontsept”, 2015, vol. 13, pp. 3311–3315. (In Russian).
9. Orlov M.R., Ospennikova O.G., Avtaev V.V., Terekhin A.M., Filonova E.V. Fractography analysis of operational distructure of the gas-turbine engine high pressure rotor disk made of EP741-NP superalloy. Aviatsionnye Materialy i Technologii, 2015, no. S1 (38), pp. 5–12. (In Russian).
10. Drukarenko N.A., Kamantsev I.S., A.V.Kuznetsov, Vladimirov A.P., Khudorozhkova Yu.V. Numerical and Experimental Approaches to the Evaluation of the Fatigue Life of a Cylindrical Specimen made of the 09G2S Steel. In: AIP Conf. Proc., 2017, vol. 1915, 040010. DOI: 10.1063/1.5017358.
Article reference
Shveikin V. P. Fatigue Failure of Natural Composite Materials // Diagnostics, Resource and Mechanics of materials and structures. -
2019. - Iss. 6. - P. 58-67. - DOI: 10.17804/2410-9908.2019.6.058-067. -
URL: http://eng.dream-journal.org/issues/content/article_282.html (accessed: 12/21/2024).
|