Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

E. I. Kuznetsova, M. V. Degtyarev, T. P. Krinitsina, Yu. V. Blinova

THE STRUCTURE OF MgB2 CERAMICS SYNTHESIZED UNDER QUASI-HYDROSTATIC PRESSING

DOI: 10.17804/2410-9908.2018.6.203-213

The paper deals with the issues of compaction and the formation of the structure of the MgB2 compound obtained under the conditions of all-around compression in a Toroid chamber (quasi-hydrostatic pressing), due to which the product has almost the same density throughout the volume. It is shown that the densest finely dispersed ceramics with a grain size of ~100 nm can be obtained from the synthesized MgB2 compound by quasi-hydrostatic pressing (P = 4–5 GPa) at room temperature followed by reductive annealing. Deformation and annealing combined made it possible to obtain ceramics with a density of 2.4 g/cm3 and a critical current density of 6.7×104 A/cm2 (at 30 K).

Acknowledgments: The research was performed on the equipment of the Testing Center of Nanotechnology and Advanced Materials collective use center of IPM UB RAS. We are grateful to A. V. Pasheev for deforming the samples. The work was performed within the state assignment on the subject of Pressure (No. AAAA-A18-118020190104-3) and supported by UB RAS project No. 18-10-2-24.

Keywords: MgB2 ceramics, quasi-hydrostatic pressure, Toroid chamber

References:

  1. Takano Y., Takeya H., Fujii H., Kumakura H., Hatano T., Togano K., Kito H., Ihara H. Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering. Appl. Phys. Lett., 2001, vol. 78, no. 19, pp. 2914–2916. DOI: 10.1063/1.1371239.
  2. Jung C.U., Park M.S., Kang W.N., Kim M.S., Kim K.H., Lee S.Y., Lee S.I. Effect of sintering temperature under high pressure on the superconductivity of MgB2. Appl. Phys. Lett., 2001, vol. 78, no. 26, pp. 4157. DOI: 10.1063/1.1382632.
  3. Yu R.C., Li S.C., Wang Y.Q., Kong X., Zhu J.L., Li F.Y., Liu Z.X., Duan X.F., Zhang Z., Jin C.Q. EELS studies of MgB2 superconductor obtained under high pressure. Physica C, 2001, vol. 363, no. 3, pp. 184–188.
  4. Jin S.Q., Li S.C., Zhu J.L., Li F.Y., Liu Z.Y., Yu R.S. High Critical Current Density of MgB2 Bulk Superconductor High-pressure Synthesized Directly from the Elements. J. of Materials Research, 2002, vol. 17, no. 3, pp. 525–527.
  5. Kuznetsova E.I., Krinitsina T.P., Sudareva S.V., Blinova Yu.V., Degtyarev M.V., Akshentsev Yu.N. Mechanisms of Cold Deformation under High Pressure of Superconductive MgB2 Ceramics. Physics of Metals and Metallography, 2018, vol. 119, no. 8, pp. 802–809. DOI: 10.1134/S0031918X18080070.
  6. Degtyarev M.V., Pilyugin V.P., Akshentsev Y.N., Kuznetsova E.I., Krinitsina T.P., Blinova Y.V., Sudareva S.V., Romanov E.P. Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor. Physics of Metals and Metallography, 2016, vol. 117, no. 8, pp. 772–782. DOI: 10.1134/S0031918X16080032.
  7. Liao X.Z., Serquis A., Zhu Y.T., Huang J.Y., Civale L., Peterson D.E., Mueller F.M., Xu H.F. Mg(B; O) precipitation in MgB2. J. Appl. Phys., 2003, vol. 93, pp. 6208–6215.
  8. Wenzel T., Nickel K.G., Glaser J., Meyer H.J., Eyidi D., Eibl O. Electron probe microanalysis of Mg–B compounds: stoichiometry and heterogeneity of superconductors. Phys. Stat. Sol. (a), 2003, vol. 198, pp. 374–386. DOI 10.1002/pssa.200306625.
  9. Eyidi D., Eibl O., Wenzel T., Nickel K.G., Schlachter S.I., Goldacker W. Superconducting properties, microstructure and chemical composition of MgB2 sheathed materials. Supercond. Sci. Technol., 2003, vol. 16, pp. 778–788.
  10. Kuznetsova E.I., Krinitsina T.P., Degtyarev M.V., Blinova Yu.V. Strucrure of magnesium diboride after cold deformation and low-temperature recovery anneal. Physics of Metals and Metallography, 2018, vol. 119, no. 12. (In print).

             

PDF      

Article reference

The Structure of Mgb2 Ceramics Synthesized under Quasi-Hydrostatic Pressing / E. I. Kuznetsova, M. V. Degtyarev, T. P. Krinitsina, Yu. V. Blinova // Diagnostics, Resource and Mechanics of materials and structures. - 2018. - Iss. 6. - P. 203-213. -
DOI: 10.17804/2410-9908.2018.6.203-213. -
URL: http://eng.dream-journal.org/issues/content/article_234.html
(accessed: 05/22/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru