Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. Yu.Kaletin

MECHANICAL PROPERTIES OF THE 38KhS STEEL AFTER ISOTHERMAL QUENCHING IN THE BAINITIC TEMPERATURE REGION

DOI: 10.17804/2410-9908.2017.6.064-070

The mechanical properties of the sparingly alloyed 38KhS steel with a carbon content of 0.36 % and a silicon content of 1.14 % after different isothermal quenching regimes in the bainitic temperature range with different holding times were investigated. It is demonstrated that, after such heat treatment, the structure of carbide-free bainite represented as a two-phase mixture of carbon-depleted bainitic ferrite and carbon-enriched retained austenite with different morphology are formed in the steel. Retained austenite in such carbide-free bainite is substantially enriched with carbon and contains a considerable part of the total carbon content in the steel. It is shown that tempering for 1...2 hours at a temperature of 300 °С raises the values of impact strength of the 38KhS steel after isothermal holdings in the bainitic transformation temperature range resulting in the formation of different proportions of lower lath and upper globular bainite, retained austenite and martensite in the structure. It has been found that, under such tempering, stabilization of retained austenite occurs due to noticeably increased carbon content in it.

Keywords: isothermal quenching, carbide-free bainite, retained austenite, bainitic ferrite, carbon, mechanical properties, strength, impact strength

References:

  1. Bhadeshia H.K.D.H. Bainite in Steels, 3d ed., London, The Institute of Materials, 2016, 616 p. ISBN-13: 978-1909662742.
  2. Bojarski Z., Bold T. Structure and properties of carbide-free-bainite. Acta Metallurgica, 1974, vol. 22, iss. 10, pp. 1223–1234.
  3. Caballero F.G., Bhadeshia H.K.D.H. Very strong bainite. Current Opinion in Solid State and Materials Science, vol. 22, iss. 10, pp. 251–257.
  4. Caballero F.G., Santofimia M.J., Garcia-Mateo C., Chao J., Garcia de Andres C. Theoretical design and advanced microstructure in super high strength steels. Materials and Design, 2009, vol. 30, iss. 6, pp. 2077–2083.
  5. Caballero F.G., Roelofs H., Hasler St., Capdevila C., Chao J., Cornide J., Garcia-Mateo C. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Materials Science and Technology, 2012, vol. 28, iss. 1, pp. 95–102.
  6. Soliman M., Mostafa H., El-Sabbah A.S., Palkovski H. Low temperature bainite in steel with 0, 26 wt% C. Materials Science and Engineering A, 2010, vol. 527, iss. 29–30, pp. 7706–7713.
  7. Shchastlivtsev V.M., Kaletina Yu.V., Fokina E.A. Ostatochniy Austenite v Legirovannykh Stalyakh [Retained Austenite in Alloy Steels]. Ekaterinburg, RIO URO RAN Publ., 2014, 236 p. ISBN 978-5-7691-2384-9. (In Russian).
  8. Long X.Y., Kang J., Lv B., Zhang F.C. Carbide-free bainite in medium carbon steel. Materials and Design, 2014, vol. 64, pp. 237–245.
  9. Krishna M.N., Janaki R.G.D., Murty B.S., Reddy G.M., Rao T.G.P. Carbide-free bainitic weld metal: a new concept in welding of armor steels. Metallurgical and Materials Transactions B, 2014, vol. 45, iss. 6, pp. 2327–2337.
  10. Kaletin A.Yu., Ryzhkov A.G., Kaletina Yu.V. Enhancement of Impact Toughness of Structural Steels upon Formation of Carbide-Free-Bainite. Physics of Metals and Metallography, 2015, vol. 116. iss. 1, pp. 109–114. DOI: 10.1134/S0031918X15010068
  11. Kaletin A.Yu., Kaletina Yu.V. Evolution of Structure and Properties of Silicon Steels in the Austenite-Bainite Phase Transition. Physics of the Solid State, 2015, vol. 57, iss. 1. pp. 56–61. DOI: 10.1134/S106378341501014X
  12. Kaletin A.Yu., KaletinaYu.V. Effect of Low-Temperature Tempering on the Properties of Structional Carbide-Free-Bainite Steels. Diagnostics, Resource and Mechanics of Materials and Structures, 2016, iss. 6, pp. 63–68. Available at: http://dream-journal.org/ /DREAM_Issue_6_2016_Kaletin_A.Yu._et_al._063_068.pdf


PDF      

Article reference

Yu.Kaletin A. Mechanical Properties of the 38khs Steel after Isothermal Quenching in the Bainitic Temperature Region // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 6. - P. 64-70. -
DOI: 10.17804/2410-9908.2017.6.064-070. -
URL: http://eng.dream-journal.org/issues/content/article_150.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru