S. V. Smirnov, A. V. Konovalov, M. V. Myasnikova, Yu. V. Khalevitsky, A. S. Smirnov, A. S. Igumnov
A COMPUTATIONAL MODEL OF V95/SiCp (7075/ SiCp) ALUMINUM MATRIX COMPOSITE APPLIED TO STRESS-STRAIN STATE SIMULATION UNDER TENSILE, COMPRESSIVE AND SHEAR LOADING CONDITIONS
DOI: 10.17804/2410-9908.2017.6.016-027 Adhering to the structural-phenomenological approach, we develop a computational model of aluminum matrix composite deformation. The model allows us to simulate the stress-strain state parameters of the composite at the microscopic and macroscopic scales and in different loading scenarios. The composite is produced by sintering, and it has a cellular internal structure. The SiC reinforcing particles are grouped around sintered aluminum alloy pellets, forming a stratum. It has been experimentally established that, during the hot deformation process, the stratum undergoes structural changes. The changes influence the effective mechanical properties of the stratum. In order to account for these changes, we use the rule of mixtures, assuming the plastic flow properties of the stratum to be distributed proportionally to the volume fraction of its constituents. The model is used to simulate stress-strain state evolution at the microscopic and macroscopic scales in three loading scenarios – tension, compression and shear. We construct equivalent (von Mises) strain and average normal stress distribution fields in the finite-element nodes of the finite element mesh of a randomly selected microvolume and show that the local plastic deformation regions emerge in the composite structure. The presence of tensile stresses is also noted, which are the most adverse in terms of internal fracture probability.
Acknowledgments: This work was partly supported by the Russian Scientific Foundation (project 14-19-01358) in the part of V95/SiC MMC numerical model developement Keywords: metal matrix composite, microstructure, simulation, stress-strain state References:
- Kurganova Yu.A., Kolmakov A.G. Konstruktsionnye Metallomatrichnye Kompozitsionnye Materialy: uchebnoe posobie [Constructional Metal Matrix Composite Materials: educational book]. Moscow, MGTU im. N.E. Baumana Publ., 2015, 141 p. (In Russian).
- Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. The Tribological Performances of a NiCrBSi–TiC Laser-Clad Composite Coating under Abrasion and Sliding Friction. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 3, pp. 83–97. Available at: http://dream-journal.org/issues/2015-3/2015-3_33.html
- Broek D. Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, The Hague, 1984, 469 p.
- Lemaitre J.A., Lippmann H.A. Course on Damage Mechanics, Berlin, Springer–Verlag, 1996, 228 p.
- Smirnov S.V. Accumulation and healing of damage during plastic metal forming: Simulation and experiment. Key Engineering Materials, 2013, vol. 528, pp. 61–69. DOI: 10.4028/www.scientific.net/KEM.528.61
- Kolmogorov V.L. Mekhanika obrabotki metallov davleniem [Mechanics of Metal Forming]. Ekaterinburg, UGTU–UPI, 2001, 836 p. (In Russian).
- Buryachenko V. Micromechanics of heterogeneous materials, New York, Springer, 2007, 686 p.
- Smirnov S.V., Myasnikova M.V., Pugacheva N.B. Hierarchical simulation of plastic deformation and fracture of complexly alloyed brass. International Journal of Damage Mechanics, 2016, vol. 25, no. 2, pp. 251–265. DOI: 10.1177/1056789515577401.
- Pugacheva N.B., Michurov N.S., Senaeva E.I., Bykova T.M. Structure and thermophysical properties of aluminum-matrix composites. The Physics of Metals and Metallography, 2016, vol. 117, no. 11, pp. 1144–1151. DOI: 10.1134/S0031918X16110119.
- Haritos G., Hager J., Amos A., Salkind M., Wang A. Mesomechanics: the microstructuremechanics connection. International Journal of Solids and Structures, 1988, vol. 24, no. 11, pp. 1081–1096. DOI: 10.1016/0020-7683(88)90007-8.
- Smirnov S.V., Konovalov A.V., Myasnikova M.V., Khalevitsky Yu.V., Smirnov A.S., Igumnov A.S. A hierarchial modeling of stress-strain state of multiphase material subjected to uniaxial loading. In: AIP Conference Proceedings, 2016, vol. 1785, pp. 040066-1–040066-4. DOI: 10.1063/1.4967123.
- Khalevitsky Yu.V., Myasnikova M.V., Konovalov A.V. Techniques for generating a model of a representative volume of an Al/SiC metal matrix composite with internal structure. Matematicheskoe Modelirovanie v Estestvennykh Naukakh, 2014, vol. 1, pp. 277–280. (In Russian).
- Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie Plasticheskoy Deformatsii Metallov i Splavov [Resistance of Metals and Alloys to Plastic Deformation]. Moscow, Metallurgiya Publ., 1983, 352 p. (In Russian).
- Pugacheva N.B., Vichuzhanin D.I., Michurov N.S., Smirnov A.S. Effect of Hot Plastic Deformation on the Structural State of a Al-10%SiC Composite. In: AIP Conference Proceedings, 2017. (In press).
- Cobden R. Aluminium: Physical Properties, Characteristics and Alloys: TALAT Lecture 1501, EAA–European Aluminium Association, 1994, 66 p.
Article reference
A Computational Model of V95/sicp (7075/ Sicp) Aluminum Matrix Composite Applied to Stress-Strain State Simulation under Tensile, Compressive and Shear Loading Conditions / S. V. Smirnov, A. V. Konovalov, M. V. Myasnikova, Yu. V. Khalevitsky, A. S. Smirnov, A. S. Igumnov // Diagnostics, Resource and Mechanics of materials and structures. -
2017. - Iss. 6. - P. 16-27. - DOI: 10.17804/2410-9908.2017.6.016-027. -
URL: http://eng.dream-journal.org/issues/content/article_133.html (accessed: 09/12/2024).
|