Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. S. Volkov, V. V. Struzhanov

MODELING OF A COMPLETE DEFORMATION DIAGRAM FOR MATERIALS WITH PROPERTIES OF AUXETICS

DOI: 10.17804/2410-9908.2017.2.040-052

A two-level model of a material with random deformation and strength properties of microstructure elements is used. The damage of microstructure elements with random levels of porosity is considered. The microstructural strength condition is defined by the distribution density of random critical strains. The calculation of the descending branch of the complete deformation diagram is performed with regard for the negative coefficient of transverse deformation of the material. The influence of the microstructure properties on the strain-stress relationship of the material is demonstrated.

Keywords: microstructure, random properties, complete deformation diagram, damage, failure

References:

  1. Trusov P.V., Volegov P.S., Yanz A. Yu. Two-Scale Models of Polycrystals: Evaluation of Validity of Ilyushin’s Isotropy Postulate at Large Displacement Gradients. Phys. Mesomech., 2016, vol. 19, no. 1, pp. 21–34. DOI: 10.1134/S1029959916010033.
  2. Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of Non-Elastic Deformation and Fracture of Composite Materials]. Nauka Publ., Moscow, 1997. – 288 p. (In Russian).
  3. Sih G.C. Fracture mechanics in retrospect in contrast to multiscaling in prospect. In: Proceedings of the 17-th National Conference of Italian Group of Fracture, edited by Finelli and L. Nobile, Bologna, June 16–18, 2004, pp. 15–37.
  4. Volkova T.A. Mekhanika zernistykh kompozitov [Mechanics of Granular Composites]. UrGUPS Publ., Ekaterinburg, 2008. – 174 p. (In Russian).
  5. Chausov N.G., Voytyuk D.G., Pilipenko A.P., Kuzmenko A.M. Installation for testing materials with the construction of complete deformation diagrams. Problemy prochnosti, 2004, no. 5, pp. 117–123. ISSN 0556-171X. (In Russian).
  6. Struzhanov V.V., Volkov S.S., Volkova T.A. Devolopment of Microstructure Damage in Structurally Heterogeneous Materials under Deformation. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 3, pp. 21–30. Available at: http://dream-journal.org/issues/2016-3/2016-3_83.html (accessed 25.02.2017). DOI: 10.17804/2410-9908.2016.3.021-030.
  7. Struzhanov V.V. On the construction of a structural model of a material on the basis of the results of a macroscale experiment. Vestnik Samarskogo gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, vol. 1, iss. 18, pp. 283–286. (In Russian).
  8. Struzhanov V.V., Bashurov V.V. Mazing’s modification model. Vestnik Samarskogo gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2007, vol. 1, iss. 14, pp. 29–39. (In Russian).
  9. Privalova V.V., Struzhanov V.V. Some features of changes in the elastic properties of a brittle material under cyclic tension. Uchenye zapiski Komsomolskogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta. Ser. Nauki o prirode i tekhnike, 2012, no. 1–1 (9), pp. 94–99. (In Russian).
  10. Volkova T.A., Volkov S.S. Microstructure damage related to deformation properties of grain composites. Theoretical and Applied Fracture Mechanics, 2008, vol. 49, iss. 3, pp. 242–250. DOI: 10.1016/j.tafmec.2008.02.004.
  11. Volkova T.A., Volkov S.S., Microstructure damage related to stress-strain curve for grain composites. Theoretical and Applied Fracture Mechanics, 2009, vol. 52, iss. 2, pp. 83–90. DOI: 10.1016/j.tafmec.2009.08.007.
  12. Surikova N.S., Panin V.E., Derevyagina L.S., Lutfullin R.Ya., Manzhina E.V., Kruglov A.A., Sarkeeva A.A. Micromechanisms of Deformation and Fracture in a VT6 Titanium Laminate under Impact Load. Phys. Mesomech., 2015, vol. 18, no. 3, pp. 250–260. DOI: 10.1134/S1029959915030091.
  13. Schastlivtsev V.M., Tabatchikova T.I., Yakovleva I.L., Klyueva S.Yu., Kruglova A.A., Khlusova E.I., Orlov V.V. Microstructure and properties of low-carbon weld steel after thermomechanical strengthening. The Physics of Metals and Metallography, 2012, vol. 113, no. 5, pp. 480–488. DOI: 10.1134/S0031918X12050067.
  14. Smirnov S.V., Perunov E.N., Konovalov D.A., Vyskrebentsev S.V. Using a Spatial Location Device for Express Diagnostics of Current Mechanical Properties of Metal Structures. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 4, pp. 89–94. Available at: http://dream-journal.org/issues/2016-4/2016-4_96.html (accessed 24.02.2017). DOI: 10.17804/2410-9908.2016.4.089-094.
  15. Konyok D.A., Voitsekhovsky K.V., Pleskachevsky Yu.M., Shilko S.V. Materials with negative Poisson’s ratio (survey). Mekhanika kompozitnykh materialov i konstruktsiy, 2004, vol. 10, no. 1, pp. 35–69. (In Russian).
  16. Choi J.B., Lakes R.S. Nonlinear properties of metallic cellular materials with a negative Poisson's ratio. J. Mater. Sci., 1992, vol. 27, iss. 17, pp. 5373–5381. DOI: 10.1007/BF01166005.
  17. Lakes R. Foam structure with a negative Poisson’s ratio. Science, 1987, vol. 235, iss. 4792, pp. 1038–1040. DOI: 10.1126/science.235.4792.1038.
  18. Friis E.A., Lakes R.S., Park. J.B. Negative Poisson's ratio polymeric and metallic materials. J. Mater. Sci., 1988, vol. 23, iss. 12, pp. 4406–4414. DOI: 10.1007/BF00551939.
  19. Ilyinykh A.V., Vildeman V.E. Modeling of the structure and fracture of granular composites. Vychislitelnaya mekhanika sploshnykh sred, 2012, vol. 5, no. 4, pp. 443–451. (In Russian).
  20. Volkov S.S. Mekhanika anizotropnykh kompozitov [Mechanics of Anisotropic Composites]. Ekaterinburg, UrO RAN Publ., 2010, 85 p. (In Russian).
  21. Permikin V.S. On the mechanism of steel fracture under high-temperature creep. In: Mekhanika microneodnorodnykh materialov i razrushenie. Vestnik USTU, Ekaterinburg, 2006, vol. 11 (82), pp. 104–109. (In Russian).


PDF      

Article reference

Volkov S. S., Struzhanov V. V. Modeling of a Complete Deformation Diagram for Materials with Properties of Auxetics // Diagnostics, Resource and Mechanics of materials and structures. - 2017. - Iss. 2. - P. 40-52. -
DOI: 10.17804/2410-9908.2017.2.040-052. -
URL: http://eng.dream-journal.org/issues/content/article_119.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru