Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

All Issues

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






A. V. Dobromyslov, E. A. Kozlov, N. I. Taluts


DOI: 10.17804/2410-9908.2016.6.069-079

The deformation structure of high-purity iron after loading by spherically converging shock waves is studied by optical metallography, transmission electron microscopy, and microhardness measurements. It is revealed that high-rate plastic deformation of iron proceeds by slip. Shear bands and bands of strain localization along grain boundaries are formed in the course of loading. A mixed structure consisting of dislocation cells and bands is observed at the microlevel. Under realized loading conditions, high-rate plastic deformation of iron proceeds in the ε-phase; therefore twins are not formed. The deformation structure of high-purity iron is compared with the structure of Armco iron formed after similar loading conditions. The found difference is explained by different mobility of dislocations.

Keywords: iron, shock waves, high-rate plastic deformation, structure


  1. Lan Y., Klaar H.I., Dahl W. Evolution of dislocation structure and deformation behavior of iron at different temperature: Part.I. Strain hardening curves and cellular structure. Metallurgical Transactions A, 1992, vol. 23, iss. 2, pp. 537–544. DOI: 10.1007/BF02801171.
  2. Arnold W. Dynamisches Werkstoffverhalten von ArmcoEisen bei Stoßwellenbelastung. Fortschr.-Ber. VDI Reihe 5 Nr. 247, Düsseldorf, Germany, VDI-Verlag, 1992, 248 S.
  3. Smith C.S., Fowler C.M. Further metallographic studies on metals after explosive shock. In: P.G. Shewmon and V.F. Zackay, eds. Response of Metals to High Velocity Deformation, Inter Science Publishers Inc., New York, 1961, pp. 309–341.
  4. Lobodyuk V.A., Savvakin G.I., Fedas N.P., Khandros L.G. Effect of shock waves on the change in the structure of Armco iron. In: Metallofizika: sbornik statey. Vyp. 53 [Metal Physics: Collection of Papers, iss. 53]. Kiev, Naukova Dumka Publ., 1974, pp. 46–50. (In Russian).
  5. Johnson J.N., Rohde R.W. Dynamic deformation twinning in shock-loaded iron. J. Appl. Phys., 1971, vol. 42, no. 11, pp. 4171–4182.
  6. Kozlov E.A., Telichko I.V., Gorbachev D.M., Pankratov D.G., Dobromyslov A.V., Taluts N.I. The metastability and incompleteness of the alpha-epsilon phase transformation in unalloyed iron loading pulses: Specific features under the effect of threshold of the deformation behavior and structure of armco iron. The Physics of Metals and Metallography, 2005, vol. 99, no. 3, pp. 300–313.
  7. Leslie W.C., Hornbogen E., Dieter G.E. The structure of shock-hardened iron before and after annealing. Journal of the Iron and Steel Institute, 1962, vol. 200, part 8, pp. 622–633.
  8. Altshuler L.V. The use of shock waves in high-pressure physics. Uspekhi fizicheskikh nauk, 1965, vol. 85, iss. 2, pp. 199–258. (In Russian).
  9. Zukas E.G., Fowler C.M. The behavior of iron and steel under impulsive loading. In: P.G. Shewmon and V.F. Zackay, eds. Response of Metals to High Velocity Deformation, Inter Science Publishers Inc., New York, 1961, pp. 343–369.
  10. Meyers M.F., Murr L.E. Defect generation in shock-wave deformation. In: M.F. Meyers, L.E. Murr, eds. Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, New York, 1981, pp.487–530.
  11. Dobromyslov A.V., Kozlov E.A., Taluts N.I. High-strain-rate deformation of armko iron induced by spherical and quasi-spherical converging shock waves and the mechanism of the α-ε transformation. The Physics of Metals and Metallography, 2008, vol. 106, no.5, pp. 531-541. DOI: 10.1134/S0031918X08110136.
  12. Kanel G.I., Razorenov S.V., Garkushin G.V., Ashitkov S.I., Komarov P.S., Agranat M.B. Deformation resistance and fracture of iron over a wide strain rate range. Physics of the Solid State, 2014, vol. 56, no. 8, pp. 1569–1573. DOI: 10.1134/S1063783414080113.
  13. Garkushin G.V., Naumova N.S., Atroshenko S.A., Razorenov S.V. Influence of the reversible α–ε phase transition and preliminary shock compression on the spall strength of armco iron. Technical Physics, 2016, vol. 61, no. 1, pp. 84–90. DOI: 10.1134/S1063784216010102.
  14. Kozlov E.A., Dobromyslov A.V., Taluts N.I., Voltz Ch. Effect of spherically converging shock waves on deformation and phase behavior of high-purity iron. The Physics of Metals and Metallography, 2012, vol. 113, no. 10, pp. 1007–1015. DOI: 10.1134/S0031918X12100055.
  15. Kamenetskaya D.S., Piletskaya I.B., Shiryaev V.I. Zhelezo vysokoy stepeni chistoty [High-Purity Iron]. Moscow, Metallurgiya Publ., 1978, 248 p. (In Russian).
  16. Maddin R., Chen N.K. Geometrical aspects of the plastic deformation of metals single crystals. In: B. Chalmers, R. King, eds. Progress in Metal Physics 5, Pergamon Press Ltd., London, 1954, vol. 5, pp. 69–125.
  17. Dobromyslov A.V., Dolgikh G.V., Taluts N.I, Shmatov V.T., Beresnev B.I. Influence of hydrostatic pressure upon geometry of slipping in monocrystals of siliceous iron. Fizika Metallov i Metallovedenie, 1982, vol. 54, iss. 2, pp. 332-338. (In Russian).


Article reference

Dobromyslov A. V., Kozlov E. A., Taluts N. I. Deformation Structure of High-Purity Iron after Explosive Loading in Spherical Systems // Diagnostics, Resource and Mechanics of materials and structures. - 2016. - Iss. 6. - P. 69-79. -
DOI: 10.17804/2410-9908.2016.6.069-079. -
URL: http://eng.dream-journal.org/issues/content/article_110.html
(accessed: 06/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru