Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2024 Issue 6

All Issues
 
2024 Issue 6
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. A. Milyutin, N. N. Nikul’chenkov

FEATURES OF FABRICATING Fe-Ga–BAKELITE MAGNETOSTRICTIVE COMPOSITES

DOI: 10.17804/2410-9908.2024.6.008-017

Magnetostrictive metal-organic composites are an important class of materials for various electrical engineering applications. Fe-Ga alloy is one of the main materials used as a basis for such composites. Epoxy resin is generally used as the organic matrix. The problem of these composites is the extremely low temperature stability of their properties due to softening of the resin at elevated temperatures. This paper is the first to propose using Bakelite, a widespread organic compound based on phenol-formaldehyde resin, to create composites. Composites based on Fe-Ga powder with the addition of 5 wt% of Bakelite were produced by cold pressing at different pressures. Besides, the effect of powder annealing after milling in a ball mill on the structure and properties of the composites is studied. It is shown that the composite made with the same parameters from the annealed powder has a significantly higher magnetostriction.

Acknowledgment: The study was assigned by the Russian Ministry of Science and Higher Education (code Mag-net, No. 122021000034-9).

Keywords: metal-organic composites, magnetostrictive composites, Fe-Ga alloy, magnetostriction

References:

  1. Elhajjar, R., Law, C.-T., and Pegoretti, A. Magnetostrictive polymer composites: recent advances in materials, structures and properties. Progress in Materials Science, 2018, 97, 204–229. DOI: 10.1016/j.pmatsci.2018.02.005.
  2. Dong, X., Qi, M., Guan, X., and Ou, J. Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: enhanced uniform magnetostrictive and mechanical properties using a dry process. Journal of Magnetism and Magnetic Materials, 2011, 323 (3–4), 351–355. DOI: 10.1016/j.jmmm.2010.09.040.
  3. Duenas, T.A. and Carman, G.P. Large magnetostrictive response of Terfenol-D resin composites (invited). Journal of Applied Physics, 2000, 87 (9), 4696–4701. DOI: 10.1063/1.373133.
  4. Yang, Z.Z., Li, J., Zhou, Z., Gong, J., Bao, X., and Gao, X. Recent advances in magnetostrictive Tb–Dy–Fe alloys. Metals, 2022, 12 (2), 341. DOI: 10.3390/met12020341.
  5. Na, S.-M., Park, J.-J., Lee, S., Jeong, S.-Y., and Flatau, A.B. Magnetic and structural anisotropic properties of magnetostrictive Fe–Ga flake particles and their epoxy-bonded composites. Materials Letters, 2018, 213, 326–330. DOI: 10.1016/j.matlet.2017.11.052.
  6. Pradhan, G., Celegato, F., Barrera, G., Olivetti, E.S., Coisson, M., Hajduček, J., Arregi, J.A., Čelko, L., Uhlíř, V., Rizzi, P., and Tiberto, P. Magnetic properties of FeGa/Kapton for flexible electronics. Scientific Reports, 2022, 12 (1), 17503. DOI: 10.1038/s41598-022-21589-3.
  7. Zhao, X., Tian, X., Yao, Z., Zhao, L., Wang, R., Yan, J., and Liu, X. Flexible Pr‐doped Fe–Ga composite materials: preparation, microstructure, and magnetostrictive properties. Advanced Engineering Materials, 2020, 22 (12), 2000080. DOI: 10.1002/adem.202000080.
  8. Kiseleva, T.Yu., Zholudev, S.I., Novakova, A.A., Gendler, T.S., Ilyinykh, I.A., Smarzhevskaya, A.I., Anufriev, Yu., and Grigorieva, T.F. Magnetodeformational anisotropy of FeGa/PU hybrid nanocomposite via particle concentration and spatial orientation. Solid State Phenomena, 2015, 233–234, 607–610. DOI: 10.4028/www.scientific.net/SSP.233-234.607.
  9. Kiseleva, T., Zholudev, S., Novakova, A., and Grigoryeva, T. The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains. Composite Structures, 2016, 138, 12–16. DOI: 10.1016/j.compstruct.2015.11.030.
  10. Lin, J., Yang, Q., Wen, X., Cai, Z.-Q., Pi, P., Zheng, D.-F., Cheng, J., and Yang, Z. Preparation, characterization, and properties of novel bisphenol-A type novolac epoxy-polyurethane polymer with high thermal stability. High Performance Polymers, 2011, 23, 394–402.
  11. Kim, H.G. and Ryu, J.H. The change of physical properties of epoxy molding compound according to the change of softening point of ο-cresol novolac epoxy resin. Journal of the Korean Chemical Society, 1996, 40 (1), 81–86.
  12. Aryani, L., Bhakti, B.S., Mubarok, A.R., Septiyani, A., Mulyani, R.H., Sudrajat, N., and Dedi, D. The effect of bakelite binders on magnetic properties and hardness values of MQP-type bonded NdFeB magnets. Metalurgi, 2023, 38 (2), 49–56. DOI: 10.55981/metalurgi.2023.718.
  13. Thepsuwan, U., Intiya, W., Sa-Nguanthammarong, P., Sae-oui, P., Sirisinha, C., and Thaptong, P. Reinforcement of bakelite moulding powder in acrylonitrile butadiene rubber (NBR): in comparison with cashew nut oil modified phenolic resin. Scientific Review, 2020, 6 (4), 28–35. DOI: 10.32861/sr.64.28.35. URL: https://arpgweb.com/journal/journal/10
  14. Mahapatra, P.M., Kumar, S., Mishra, P., and Panda, A.K. Effect of different thermoplastics on the thermal degradation behavior, kinetics, and thermodynamics of discarded bakelite. Environmental Science and Pollution Research, 2023, 31, 38788–38800. DOI: 10.1007/s11356-023-25953-2.
  15. Milyutin, V.A. and Gervasieva, I.V. Application of the instrumented nanoindentation method to evaluating the behavior of the mechanical properties of a Fe–Ga alloy with increasing gallium content. Diagnostics, Resource and Mechanics of materials and structures, 2018, 6, 90–99. DOI: 10.17804/2410-9908.2018.6.090-099. Available at: http://dream-journal.org/issues/2018-6/2018-6_227.html
  16. Na, S.M., Suh, S.J., Shin, K.H., Lee, Y.S., and Lim S.H. Magnetostrictive properties of polymer-bonded Fe–Co based alloy composites. Journal of Applied Physics, 2003, 93 (10), 8501–8503. DOI: 10.1063/1.1543869.
  17. Dong, X., Ou, J., Guan, X., and Qi, M. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance. Journal of Magnetism and Magnetic Materials, 2010, 322 (22), 3648–3652. DOI: 10.1016/j.jmmm.2010.07.015.
  18. Dong, X., Qi, M., Guan, X., Li, J., and Ou, J. Magnetostrictive properties of titanate coupling agent treated Terfenol-D composites. Journal of Magnetism and Magnetic Materials, 2012, 324 (6), 1205–1208. DOI: 10.1016/j.jmmm.2011.11.010.
  19. Mudivarthi, C., Na, S.-M., Schaefer, R., Laver, M., Wuttig, M., and Flatau, A.B. Magnetic domain observations in Fe–Ga alloys. Journal of Magnetism and Magnetic Materials, 2010, 322 (14), 2023–2026. DOI: 10.1016/j.jmmm.2010.01.027.
  20. Mansouri, Y., Cheverikin, V.V., Palacheva, V.V., Koshmin, A.N., Aleshchenko, A.S., Astakhov, V.A., Dementeva, O.Yu., Milyutin, V.A., and Golovin, I.S. Texture and magnetostriction in warm rolled and recrystallized Fe–Ga alloy. Physics of Metals and Metallography, 2021, 122 (4), 389–395. DOI: 10.1134/S0031918X21040062.


PDF      

Article reference

Milyutin V. A., Nikul’chenkov N. N. Features of Fabricating Fe-Ga–bakelite Magnetostrictive Composites // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 6. - P. 8-17. -
DOI: 10.17804/2410-9908.2024.6.008-017. -
URL: http://eng.dream-journal.org/issues/2024-6/2024-6_471.html
(accessed: 02/05/2025).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2025, www.imach.uran.ru