Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2024 Issue 5

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. E. Burov

PROBABILISTIC MODELING OF THE LOAD-BEARING CAPACITY OF A COMPOSITE PRESSURE VESSEL

DOI: 10.17804/2410-9908.2024.5.097-106

Modeling possible limit states and predicting load-bearing capacity, accounting for the scatter of mechanical properties, is an integral part of ensuring the strength and reliability requirements for structures. In this study, based on a probabilistic approach, we analyze the influence of variations in the parameters of the composite shell on the load-bearing capacity of a high-pressure metal-composite tank manufactured by continuous composite tape winding on a thin liner. Winding angle, fiber volume content, and ultimate fiber strength are taken as the variable parameters. Numerical modeling based on a model taking into account the processes of damage accumulation and degradation in the mechanical properties of the material is used to predict the mechanical behavior of the structure. Based on the calculation results, the burst pressure distribution function is obtained, which gives an idea of the influence of manufacturing process variability on the load-bearing capacity of the tank.

Keywords: high-pressure metal-composite tank, numerical analysis, stress-strain state, progressive failure, probabilistic approach, burst pressure

References:

  1. Vasiliev, V.V. Composite Pressure Vessels: Analysis, Design, and Manufacturing. Ridge Publishing, Blacksburg, VA, 2009, 690 p.
  2. Nesushchaya sposobnost i bezopasnost metallokompozitnykh bakov kosmicheskikh apparatov [Load-Bearing Capacity and Safety of Metal-Composite Tanks in Spacecraft, eds., V.V. Moskvichev and N.A. Testoedov]. Nauka Publ., Novosibirsk, 2021, 439 p. (In Russian).
  3. Azeem, M., Ya, H.H., Alam, M.A., Kumar, M., et al. Application of filament winding technology in composite pressure vessels and challenges: a review. Journal of Energy Storage, 2022, 49, 103468. DOI: 10.1016/j.est.2021.103468.
  4. Kam, T.Y., Liu, Y.W., and Lee, F.T. First-ply failure strength of laminated composite pressure vessels. Composite Structures, 1997, 38, 65–70. DOI: 10.1016/S0263-8223(97)00042-1.
  5. Garnich, M.R. and Akula, M.K. Review of degradation models for progressive failure analysis of fiber reinforced polymer composites. Applied Mechanics Reviews, 2009, 62 (1), 010801. DOI: 10.1115/1.3013822.
  6. Ganesan, R. and Nair, A.S. Reliability-based first-ply failure envelopes of composite tubes subjected to combined axial and torsional loadings. Mechanics Based Design of Structures and Machines, 2024, 52 (7), 4470–4502. DOI: 10.1080/15397734.2023.2229415.
  7. De Luca, A. and Caputo, F. A review on analytical failure criteria for composite materials. AIMS Materials Science, 2017, 4 (5), 1165–1185. DOI: 10.3934/matersci.2017.5.1165.
  8. Rabotnov, Yu.N. Problemy mekhaniki deformiruemogo tverdogo tela: izbrannye trudy [The Problems of Solid Mechanics: Selected Works]. Nauka Publ., Moscow, 1991, 194 p. (In Russian).
  9. Srilakshmi, Ch., Sambasivarao, G., and Kumar, J.S. A review on progressive failure analysis of composites. IOP Conference Series: Materials Science and Engineering, 2021, 1185, 012020. DOI: 10.1088/1757-899X/1185/1/012020.
  10. Regassa, Y., Gari, J. and Lemu, H.G. Composite overwrapped pressure vessel design optimization using numerical method. Journal of Composites Science, 2022, 6 (8), 229. DOI: 10.3390/jcs6080229.
  11. Ge, L. Zhao, J., Li, H., Dong, J., Geng, H., Zu, L., Lin, S., Jia, X., and Yang, X. A three-dimensional progressive failure analysis of filament-wound composite pressure vessels with void defects. Thin-Walled Structures, 2024, 199, 111858. DOI: 10.1016/j.tws.2024.111858.
  12. Ozaslan, E., Yurdakul, K., and Talebi, C. Investigation of effects of manufacturing defects on bursting behavior of composite pressure vessels with various stress ratios. International Journal of Pressure Vessels and Piping, 2022, 199, 104689. DOI: 10.1016/j.ijpvp.2022.104689.
  13. Vallmajo, O., Arteiro, A., Guerrero, J.M., Melro, A.R., Pupurs, A., and Turon, A. Micromechanical analysis of composite materials considering material variability and microvoids. International Journal of Mechanical Sciences, 2024, 263, 108781. DOI: 10.1016/j.ijmecsci.2023.108781.
  14. Burov, A.E. Burst pressure estimations of a composite pressure vessel accounting for the composite shell imperfections. Journal of Physics: Conference Series, 2019, 1260, 112007. DOI: 10.1088/1742-6596/1260/11/112007.
  15. Lepikhin, A.M., Makhutov, N.A., Moskvichev, V.V., and Chernyaev, A.P. Veroyatnostnyi risk-analiz konstruktsyi tekhnicheskikh sistem [Probabilistic Risk, Analysis of Technical Systems]. Nauka Publ., Novosibirsk, 2003, 173 p. (In Russian).
  16. Zu, L., Koussios, S., and Beukers, A. Design of filament-wound isotensoid pressure vessels with unequal polar openings. Composite Structures, 2010, 92 (9), 2307–2313. DOI: 10.1016/j.compstruct.2009.07.013.
  17. Hashin, Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47, 329–334. DOI: 10.1115/1.3153664.
  18. Kaplun, A.B., Morozov, E.M., and Shamraeva, M.A. Ansys v rukakh inzhenera [Ansys in the Hands of an Engineer: Guidance Manual]. Lenand Publ., Moscow, 2021, 272 p.
  19. Halpin Affdl, J.C. and Kardos, J.L. The Halpin-Tsai equations: a review. Polymer Engineering and Science, 1976, 16 (5), 344–352. DOI: 10.1002/pen.760160512.
  20. Alam, S., Yandek, G.R., Lee, R.C., and Mabry, J.M. Design and development of a filament wound composite overwrapped pressure vessel. Composites. Part C: Open Access, 2020, 2, 100045. DOI: 10.1016/j.jcomc.2020.100045.


PDF      

Article reference

Burov A. E. Probabilistic Modeling of the Load-Bearing Capacity of a Composite Pressure Vessel // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 5. - P. 97-106. -
DOI: 10.17804/2410-9908.2024.5.097-106. -
URL: http://eng.dream-journal.org/issues/2024-5/2024-5_478.html
(accessed: 12/22/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru