Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2024 Issue 3

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. L. Skalozub

CALCULATING RESONANT FREQUENCIES OF AXISYMMETRIC OSCILLATIONS OF ISOTROPIC CYLINDRICAL DISKS

DOI: 10.17804/2410-9908.2024.3.017-028

Resonant axisymmetric oscillations of cylindrical disks made of isotropic materials are analytically considered in accordance with the Kog theory. Relationships of dimensionless resonant frequencies to the geometrical dimensions of the disks and the dynamic characteristics of the material (Poisson’s ratio and shear wave velocity) are presented in a form convenient for calculations. Digital values of resonant frequencies are calculated and summarized in tables at different Poisson’s ratios ranging between 0.20 and 0.45, with a step of 0.05, for a number of discrete thickness-to-diameter ratios ranging from 0 to 0.853145 and from 0 to 0.30 when oscillations of the first and second modes are exited, respectively. The estimation of method errors in resonant frequency calculations based on the comparison with the known results obtained by the Rayleigh-Ritz method has proved their high repeatability. Instrumental errors in determining the dynamic characteristics of the material are calculated in relation to experimental results obtained in a number of well-known studies.

Acknowledgments: I am grateful to R. S. Skalozub for his assistance in the search and delivery of the necessary literature and A. S. Skalozub for the computer support of the preparation and formatting of the manuscript.

Keywords: cylindrical disks, resonant oscillations, dynamic Poisson’s ratio, shear wave velocity

References:

  1. Meleshko, V.V., Yakimenko, N.S., and Ulitko, A.F. Resonance method for determining the elastic constants of finite isotropic cylinders. Akustichniy Visnyk, 2008, 11 (3), 65–75. (In Russian).
  2. Pochhammer, L. Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. Journal für die reine und angewandte Mathematik, 1876, 81 (4), 324–336. (In German). DOI: 10.1515/crll.1876.81.324.
  3. Cree, C. Longitudinal vibrations of a circular bar. Quart. J. Pure Appl. Math., 1886, 21, 287-298.
  4. Cree, C. On longitudinal vibrations. Quart. J. Pure Appl. Math., 1889, 23, 317-342.
  5. Grinchenko, V.T. and Meleshko, V.V. Garmonicheskie kolebaniya i volny v uprugikh telakh [Harmonic Oscillations and Waves in Elastic Bodies]. Naukova Dumka Publ., Kiev, 1981, 282 p. (In Russian).
  6. Hutchinson, J.R. Axisymmetric vibrations of a free finite-length rod. J. Acoust. Soc. Amer., 1972, 51 (1B), 233-240. DOI: 10.1121/1.1912835.
  7. Grinchenko, V.T. and Meleshko, V.V. High-frequency axisymmetric vibrations of circular disks. Soviet Applied Mechanics, 1976, 12, 1251–1258. DOI: 10.1007/BF00882700.
  8. Grinchenko, V.T. and Meleshko, V.V. Axisymmetric vibrations of an elastic cylinder of finite length. Soviet Physics. Acoustics, 1978, 24 (6), 861–866.
  9. Hutchinson, J.R. Vibrations of solid cylinders. Journal of Applied Mechanics, 1980, 47 (4), 901-907. DOI: 10.1115/1.3153811.
  10. Chernyshev, K.V. and Shegai, V.V. Natural vibrations of solid cylinders of finite length. Akusticheskij Zhurnal, 1977, 23, 4, 627–631. (In Russian).
  11. Kari, L. Axially symmetric modes in finite cylinders – the wave guide solution. Wave Motion, 2003, 37, 191–206. DOI: 10.1016/S0165-2125(02)00070-7.
  12. Puckett, A.D. and Peterson, M.L. A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides. Ultrasonics, 2005, 43 (3), 197-207. DOI: 10.1016/j.ultras.2004.04.008.
  13. Leissa, A.W. and So, J. Comparisons of vibration frequencies for rods and beams from one‐dimensional and three‐dimensional analyses. J. Acoust. Soc. Am., 1995, 98, 2122–2135. DOI: 10.1121/1.414331.
  14. Leissa, A.W. and So, J. Accurate vibration frequencies of circular cylinders from three-dimensional analysis. J. Acoust. Soc. Amer., 1995, 98, 2136-2141. DOI: 10.1121/1.414403.
  15. Nieves, F.J., Bayón, A., and Gascón F. Optimization of the Ritz method to calculate axisymmetric natural vibration frequencies of cylinder. J. Sound Vib., 2008, 311 (1–2), 588-596. DOI: 10.1016/j.jsv.2007.09.010.
  16. Koga, I. Longitudinal vibrations of short circular cylinders. J. Inst. Electr. Eng. Japan., 1930, 50 (508), 1209–1224.
  17. Stupin, V.A. Calculation of longitudinal oscillations in a cylinder of finite dimensions. Russian Journal of Nondestructive Testing, 2000, 36, 896–899. DOI: 10.1023/A:1016722511722.
  18. Popov, A.L. and Sadovsky, S.A. On the correspondence of theoretical models of longitudinal vibrations of a rod with experimental data. Vestnik Sankt-Petersburgskogo Universiteta. Matematika. Mekhanika. Astronomiya, 2021, 8 (2), 270–281. DOI: 10.21638/spbu01.2021.207.
  19. Gadzhibekov, T.A. and Ilyashenko, A.V. Theoretical aspects of the application of Pochhammer–Chree waves to the problems of determining the dynamic Poisson’s ratio. Mechanics of Solids, 2021, 56, 702–714. DOI: 10.3103/S0025654421050095.
  20. Mokryakov, V.V. Stresses in Pochhammer–Chree axisymmetric waves in the medium-wavelength range. Acoustical Physics, 2022, 68 (3), 206–214. DOI: 10.1134/S1063771022030095.
  21. Shibayama, K. Piezoceramic transducers as short rods. In: Y. Kikuchi, ed., Ultrasonic transducers, ch. 9, Corona Publishing Company, Tokyo, 1969, 406 p.
  22. Ganopolskiy, V.V., Kasatkin, B.A., Legusha, F.F., Prudko, N.I., and Pugachev, S.I. Pyezokeramicheskie preobrazovateli [The Piezoceramic Transducers: The Handbook]. Sudostroenie Publ., Leningrad, 1984, 256 p. (In Russian).
  23. Gaidukov, Yu.P., Danilova, N.P., and Sapozhnikov O. Vibration modes of an isotropic disk with a weak dependence on the disk thickness. Acoustical Physics, 1999, 45 (2), 163–171.
  24. Available at: https: // calculate.co.nz/bessel-function-calculator.php
  25. Nieves, F.J., Gascón, F., and Bayón, A. A multiple frequency in the two lowest axisymmetric vibration modes of a short cylinder. Journal of Sound and Vibration, 2002, 251 (4), 741-749. DOI: 10.1006/jsvi.2001.3862.
  26. Nieves, F.J.; Gascón, F., and Bayón, A. On the natural frequencies of short cylinders and the universal point. Direct determination of the shear modulus. The Journal of the Acoustical Society of America, 2004, 115, 2928-2936. DOI: 10.1121/1.1739485.
  27. McMahon, G.W. Experimental study of the vibrations of solid, isotropic, elastic cylinders. The Journal of the Acoustical Society of America, 1964, 36 (1), 85-92. DOI: 10.1121/1.1918918.


PDF      

Article reference

Skalozub S. L. Calculating Resonant Frequencies of Axisymmetric Oscillations of Isotropic Cylindrical Disks // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 3. - P. 17-28. -
DOI: 10.17804/2410-9908.2024.3.017-028. -
URL: http://eng.dream-journal.org/issues/2024-3/2024-3_426.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru