Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2024 Issue 2

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. А. Sharapova, V. P. Shveykin, I.G. Margamov, V. Yu. Ivanov, O. V. Ryabukhin

INFRARED SPECTROSCOPY FOR EVALUATING THE EFFECT OF ELECTRON BEAM STERILIZATION ON POLYETHYLENE TEREPHTHALATE MEDICAL TUBES

DOI: 10.17804/2410-9908.2024.2.061-068

The paper studies the effect of electron beam sterilization on the polyethylene terephthalate parts of blood sampling systems. The structural state and crystallinity degree of polyethylene terephthalate are estimated from the analysis of infrared spectra. Relative intensities are calculated by the reference band (overall intensity level) at 1410 cm−1. The Gaussian intensities of the absorption bands for trans and gauche conformations with respect to reference band at 1505 cm–1 are calculated. The spectral coefficients D973/D795, D848/D795, D1042/D795, D895/D795, D1098/D1370, and D1255/D1370 are determined. The dose of up to 25 kGy has no significant effect on either the ratio of integral intensities or the ratio of trans and gauche conformations.

Acknowledgment: The work was supported by the IAEA, contract CRP F23035.

Keywords: polymers, irradiation embrittlement, infrared (IR) spectroscopy

References:

  1. Brooks, D.W. and Giles, G.A. PET Packaging Technology, Academic Press, Sheffield, 2002, 375 р.
  2. Cole, K.C., Guèvremont J., Ajji, A., and Dumoulin, M.M. Characterization of surface orientation in poly(ethylene terephthalate) by front-surface reflection infrared spectroscopy. Applied Spectroscopy, 1994, 1, 1513–1521. DOI: 10.1021/ma00236a008.
  3. Pintos, P.B., León, A.S., and Molina, S.I. Large format additive manufacturing of polyethylene terephthalate (PET) by material extrusion. Additive Manufacturing, 2024, 79, 103908. DOI: 10.1016/j.addma.2023.103908.
  4. Schmidt, P.G. Polyethylene terephthalate structural studies. Journal of Polymer Science. Part A: General Papers, 1963, 1 (4), 1271–1292. DOI: 10.1002/pol.1963.100010417.
  5. Petukhov, B. V. Polyefirnye volokna [Polyester Fibers]. Khimiya Publ., Moscow, 1976, 272 р. (In Russian).
  6. Roberge, М., Prud’homme, R.E., and Brisson, J. Molecular modelling of the uniaxial deformation of amorphous polyethylene terephthalate. Polymer, 2004, 45 (4), 1401–1411. DOI: 10.1016/j.polymer.2003.04.00.
  7. Shrubok, A.O. and Happi Wako, B.J. The estimation of the crystallinity degree of fine powders of secondary polyethylene terephthalate by IR-spectroscopy. In: Trudy BGTU, Ser. 2: Chemical Engineering, Biotechnologies, Geoecology, 2022, 2 (259), 41–48 (In Russian).
  8. Chen, Z., Hay, J.N., and Jenkins, M.J. FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization. European Polymer Journal, 2012, 48 (9), 1586–1610. DOI: 
  9. Dekhant, I., Dants, R., Kimmer, V., and Shmolke, R. Infrakrasnaia spektroskopiia polimerov [Infrared Spectroscopy of Polymers]. Khimiya Publ., Moscow, 1976. 472 p. (In Russian).
  10. Cole, K.C., Ajji, A., and Pellerin, E. New insights into the development of ordered structure in poly(ethylene terephthalate). 1. Results from external reflection infrared spectroscopy. Macromolecules, 2002, 35 (3), 770–784. DOI: 10.1021/ma011492i.
  11. Vijayakumar, S. and Rajakumar, P.R. Infrared spectral analysis of waste pet samples. International Letters of Chemistry, Physics and Astronomy, 2012, 4, 58–65. DOI: 10.56431/p-0wwmqk.
  12. Pereira, A., Silva, M., Junior, E., Paula, A., and Tommasini, F. Processing and characterization of PET composites reinforced with geopolymer concrete waste. Materials Research, 2017, 20 (2). DOI: 10.1590/1980-5373-MR-2017-0734.
  13. Kazitsina, L.A. and Kupletskaya, N.B. Primenenie UF-, IK-, YaMR i mass-spektroskopii v organicheskoy khimii [Application UV-, IR-, NMR- and Mass- Spectroscopy in the Organic Chemistry]. Izd-vo Mosk. Un-ta Publ., Moscow, 1979, 240 р. (In Russian).
  14. Wojdyr, M. Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 2010, 43, 1126–1128. DOI: 10.1107/S0021889810030499.
  15. Stas'kov, N.I. and Ivashkevich, I.V. Optical constants of poly(ethylene terephtalate) in the range of 1410-cm-1 IR absorbtion band. Polymer Science. Series B, 2008, 50, 120–123. DOI: 10.1134/S1560090408050047.
  16. Zhivulin, V.E., Evsyukov, S.E., Chalov, D.A., Morilova, V.M., Andreychuk, V.P., Khairanov, R.Kh., Margamov, I.G., and Pesin, L.A. Evolution of the molecular structure of partially dehydrofluorinated poly(vinylidene fluoride) films upon storage in air. while keeping in the air. Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques, 2022, 16 (5), 673–681. DOI: DOI:10.1134/S1027451022050214.
  17. González-Córdova, J.A., Ariza-Flores, D., Pérez-Huerta, J.S., Madrigal-Melchor, J., López-Miranda, A., and Ortega-Gallegos, J. Optical anisotropy Raman response of polyethylene terephthalate strained thin films. Physica B: Condensed Matter, 2023, 654, 414693. DOI: 10.1016/j.physb.2023.414693.
  18. Lin, S.-B. and Koenig, J.L. Spectroscopic characterization of the rotational conformations in the disordered phase of poly(ethylene terephthalate). Journal of Polymer Science. Part B: Polymer Physics, 1982, 20 (12), 2277–2295. DOI: 10.1002/pol.1982.180201209.
  19. Liu, J. and Koenig, J.L. Data processing techniques to extract pure-component spectra from mixture spectra and their application to polymeric systems. Analytical Chemistry, 1987, 59 (21), 2609–2615. DOI: 10.1021/ac00148a017.
  20. Hofmann, G.R., Sevegney, M.S., and Kannan, R.M. A rheo-optical FTIR spectrometer for investigating molecular orientation and viscoelastic behavior in polymers. International Journal of Polymer Analysis and Characterization, 2004, 9 (4), 245–274. DOI: 10.1080/10236660490920237.
  21. Kudashev, S.V., Arisova, V.N., Danilenko, T.I., Zheltobryukhov, V.F., Urmantsev, U.R., and Tabaev, B.V. Structural-morphological characteristics and properties of fluorine-containing surface-modified poly(ethilene terephthalate) films. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51 (1), 106–111. DOI: 10.1134/S2070205114050098.
  22. Tzavalas, S., Mouzakis, D.E., Drakonakis, V., and Gregoriou V.G. Polyethylene terephthalate-multiwall nanotubes nanocomposites: effect of nanotubes on the conformations, crystallinity and crystallization behavior of PET. Journal of Polymer Science. Part B: Polymer Physics, 2008, 46 (7), 668–676. DOI: 10.1002/polb.21378.
  23. Caire-Maurisier, F., Aymes-Chodur, C., Jandard, V., Bourrel, A., and Yagoubi, N. Effects of electron beam sterilization on polyethylene terephthalate: physico-chemical modifications and formation of non-volatile organic extractables. Annales Pharmaceutiques Françaises, 2019, 77 (4), 276–285. DOI: 10.1016/j.pharma.2019.02.001.


PDF      

Article reference

Infrared Spectroscopy for Evaluating the Effect of Electron Beam Sterilization on Polyethylene Terephthalate Medical Tubes / V. А. Sharapova, V. P. Shveykin, I.G. Margamov, V. Yu. Ivanov, O. V. Ryabukhin // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 2. - P. 61-68. -
DOI: 10.17804/2410-9908.2024.2.061-068. -
URL: http://eng.dream-journal.org/issues/2024-2/2024-2_441.html
(accessed: 12/30/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru