Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2024 Issue 1

All Issues
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

D. D. Satskii, S. V. Soloveva, A. E. Ustinov, V. Y. Yarkov, M. L. Lobanov

DETERMINATION OF AUSTENITE GRAIN SIZE IN FERRITIC-MARTENSITIC STAINLESS STEEL BY ORIENTATION MICROSCOPY METHODS

DOI: 10.17804/2410-9908.2024.1.028-044

The development of chromium stainless steels is caused by the need for creating materials showing an optimal combination of physical, mechanical, and chemical properties when used in aggressive environments. Currently, for the production of industrial tubular articles functioning under load at high temperatures, it is promising to use stainless steels of the ferritic-martensitic and martensitic classes, strengthened by additional alloying. The achievement of a given set of properties in steels and alloys is determined by the homogeneity of the chemical and phase compositions, microstructure and crystallographic texture. The formation of these parameters for heat-treated materials is mainly determined by the characteristics of the grains of austenite formed during heat treatment before quenching. The size and shape of austenite grains determine the morphology and dispersion of the products of γ→α′(α) phase transformation. Orientation microscopy methods based on backscattered electron diffraction are used to study the restorability of high-temperature austenite grains for samples of a low-carbon high-alloy stainless steel of the ferritic-martensitic class, with ~12 wt% Cr, additionally alloyed with Ni, Mo, W, Nb, and V. After heat treatment, the samples have a ferrite-martensite and ferrite-bainite structure. When restoring austenite grains, we used the orientation relationships (ORs) of Kurdyumov–Sachs (K–S), Nishiyama–Wasserman (N–W), Greninger–Troyan (G–T), and new ORs proposed by V. S. Kraposhin (ORK). The fundamental possibility of restoring pre-existing austenite grains is shown. The restoration is based on the crystallographic features of both ferrite-martensite and ferrite-bainite structures. The most valid results in austenite grain recovery were obtained when OR K–S and ORK were used.

Acknowledgments: The research was supported by the Russian Science Foundation, grant No. 23-29-00615, https://rscf.ru/project/23-29-00615/.

Keywords: chromium stainless steel, heat treatment, γ→α-transformation, martensite, bainite, orientation microscopy, orientation relationships

References:

  1. Beskorovayniy, N.M., Kalin, B.A., Platonov, P.A., and Chernov, I.I. Konstruktsionnye materialy yadernykh reaktorov [Constructional Materials of Nuclear Reactors]. Energoatomizdat. Publ., Moscow, 1995, 704 p. (In Russian).
  2. Arzamasov, B.N., Makarova, V.I., Mukhin, G.G., Ryzhov, N.M., and Silaeva, V.I. Materialovedenie [Material Science]. Moscow, MGTU im. Baumana Publ., 2005, 648 p. (In Russian).
  3. Samoylov, A.G. Teplovydelyayushchie elementy yadernykh reaktorov [Fuel Elements of Nuclear Reactors]. Energoatomizdat Publ., Moscow, 1985, 222 p. (In Russian).
  4. Golosov, O.A., Kuzina, T.L., and Panchenko, V.L. The effect of high-dose neutron irradiation on the structure, corrosive and electrochemical behavior of the EP–450 ferritic-martensitic steel. In: Trudy XXIX konferentsii “Radiatsionnaya fizika tverdogo tela” [Proceedings of the 29th International Conference on Solid-State Radiation Physics]. FGBNU NII PMT Publ., Sevastopol, 2019, 219–233. (In Russian). 
  5. Molyarov, A.V. Termicheskaya obrabotka, struktura i zharoprochnost ferritno-martensitnykh staley s 12% khroma [Heat Treatment, Structure, and High-Temperature Strength of 12% Ferritic-Martensitic Chromium Steels: Cand. Thesis]. Moscow, 2017, 183 p. (In Russian).
  6. Serebryakov, A.V., Ladygin, S.A., Maltsev, V.V., Serebryakov, A.V., Parshakov, S.I., and Burkin, S.P. Precision stainless pipes for nuclear power engineering. In: Trudy VI mezhdunarodnoy molodezhnoy nauchno-prakticheskoy konferentsii “Innovatsionnye tekhnologii v metallurgii i mashinostroenii” [Proceedings of the 6th International Youth Scientific and Practical Conference on Innovation Technologies in Metallurgy and Mechanical Engineering]. Ural Federal University Publ., Ekaterinburg, 2012, pp. 529–536. (In Russian).
  7. Lanskaya, K.A. Vysokokhromistye zharoprochnye stali [High-Chromium Heat-Resistant Steels]. Metallurgiya Publ., Moscow, 1976, 216 p. (In Russian).
  8. Berezovskaya, V.V. and Berezovsky, A.V. Korrozionno-stoykie stali i splavy [Corrosion-Resistant Steels and Alloys: textbook]. Izd-vo Uralskogo Universiteta Publ., Ekaterinburg, 2019, 244 p. (In Russian).
  9. Polekhina, N.A., Litovchenko, I.Yu., Almaeva, K.V., Tyumentsev, A.N., Pinzhin, Yu.P., Chernov, V.M., and Leontyeva–Smirnova, M.V. Comparative investigation of microstructure, mechanical properties and fracture features of heat-resistant ferritic-martencitic steels EK–181, ChS–139 and EP–823 in the temperature range from –196 to 720ºC. VANT, Ser. Termoyadernyi Sintez, 2018, 41 (4), 2018, pp. 38–47. (In Russian). DOI: 10.21517/0202-3822-2018-41-4-38-47.
  10. Liu, M., Zhang, Y., Wang, X., Beausir, B., Zhao, X., Zuo, L., and Esling, C. Crystal defect associated selection of phase transformation orientation relationships (ORs). Acta Materialia, 2018, 152, 315–326. DOI: 10.1016/j.actamat.2018.04.031.
  11. Maitland, T. and Sitzman, S. Electron backscatter diffraction (EBSD) technique and materials characterization examples. In: W. Zhou and Z.L. Wang, eds. Scanning Microscopy for Nanotechnology: Techniques and Applications, Springer Science, 2007, p. 41–75.
  12. Nolze, G., Winkelmann, A., Cios, G., and Tokarski, T. Tetragonality mapping of martensite in a high‑carbon steel by EBSD. Materials Characterization, 2021, 175, 111040. DOI: 10.1016/j.matchar.2021.111040.
  13. Adachi, Y., Ojima, M., Morooka, S., and Tomota, Y. Hierarchical 3D/4D characterization on deformation behavior of austenitic and pearlitic steels. Materials Science Forum, 2010, 638–642, 2505–2510. DOI: 10.4028/www.scientific.net/msf.638-642.2505.
  14. Gundyrev, V.M., Zeldovich, V.I., and Schastlivtsev, V.M. Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite. The Physics of Metals and Metallography, 2016, 117, 1017–1027. DOI: 10.1134/S0031918X16100100.
  15. Gundyrev, V.M., Zeldovich, V.I., and Schastlivtsev, V.M. Orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81 (11), 1289–1294. DOI: 10.3103/S1062873817110119.
  16. Kraposhin, V., Jakovleva, I., Karkina, L., Nuzhny, G., Zubkova, T., and Talis, A. Microtwinning as a common mechanism for the martensitic and pearlitic transformations. Journal of Alloys and Compounds, 2013, 577, S30–S36. DOI: 10.1016/j.jallcom.2011.10.102.
  17. Lobanov, M.L., Krasnov, M.L., Urtsev, V.N., Danilov, S.V., and Pastukhov, V.I. Effect of cooling rate on the structure of low-carbon low-alloy steel after thermomechanical controlled processing. Metal Science and Heat Treatment, 2019, 61, 32–38. DOI: 10.1007/s11041-019-00373-7.
  18. Lobanov, M.L., Khotinov, V.A., Danilov, S.V., Stepanov, S.I., Urtsev, V.N., Urtsev, N.V., and Platov, S.I. Tensile Deformation and fracture behavior of API–5L x70 line pipe steel. Materials, 2022, 15 (2), 501. DOI: 10.3390/ma15020501.
  19. Lobanov, M.L., Rusakov, G.M., Redikultsev, A.A., Belikov, S. V., Karabanalov, M. S., Struina, E. R., and Gervasyev, A.M. Investigation of special misorientations in lath martensite of low-carbon steel using the method of orientation microscopy. The Physics of Metals and Metallography, 2016, 117, 254–259. DOI: 10.1134/S0031918X1603008X.
  20. Rusakov, G.M., Lobanov, M.L., Redikultsev, A.A., and Belyaevskikh, A.S. Special misorientations and textural heredity in the commercial alloy Fe–3%Si. The Physics of Metals and Metallography, 2014, 115 (8), 775–785. DOI: 10.1134/S0031918X14080134.
  21. Hölscher, M., Raabe, D., and Lücke, K. Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals. Acta Metalurgica et Materialia, 1994, 42 (3), 879–886. DOI: 10.1016/0956-7151(94)90283-6.
  22. Gong, W., Tomota, Y., Adachi, Y., Paradowska, A.M., Kelleher, J.F., and Zhang, S.Y. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta Materialia, 2013, 61 (11), 4142–4154. DOI: 10.1016/j.actamat.2013.03.041.
  23. De Diego-Calderón, I., Sabirov, I., Molina–Aldareguia, J.M., Föjer, C., Thiessen, R., and Petrov, R.H. Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties. Materials Science and Engineering: A, 2016, 657, 136–146. DOI: 10.1016/j.msea.2016.01.011.
  24. Huang, Ch.-Y., Ni, H.-C., and Yen, H.-W. New protocol for orientation reconstruction from martensite to austenite in steels. Materialia, 2020, 9, 100554 (1–12). DOI: 10.1016/j.mtla.2019.100554.


PDF      

Article reference

Determination of Austenite Grain Size in Ferritic-Martensitic Stainless Steel by Orientation Microscopy Methods / D. D. Satskii, S. V. Soloveva, A. E. Ustinov, V. Y. Yarkov, M. L. Lobanov // Diagnostics, Resource and Mechanics of materials and structures. - 2024. - Iss. 1. - P. 28-44. -
DOI: 10.17804/2410-9908.2024.1.028-044. -
URL: http://eng.dream-journal.org/issues/2024-1/2024-1_432.html
(accessed: 05/09/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru