Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2023 Issue 6

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

S. E. Danilov

SEPARATION IN Fe–Ni AND Fe–Ni–P ALLOYS UNDER ELECTRON IRRADIATION AND ISOCHRONOUS ANNEALING

DOI: 10.17804/2410-9908.2023.6.159-164

The annealing of radiation defects in the Fe–34.7at.%Ni and Fe–34.6at.%Ni–0.1at.%P alloys irradiated with 5 MeV electrons is studied by the method of residual electrical resistivity. It is shown that, during annealing after irradiation at 80 K, vacancies become mobile in the region of 220 K with a migration energy of about 0.6 eV. In this case, vacancy-impurity complexes (clusters) are formed, and in the H36 alloy vacancy clusters are formed. Under irradiation at room temperatures, vacancy defects accumulate in the form of vacancy clusters. The dissociation of these clusters at 350–550 K results in the appearance of freely migrating vacancies and enhanced self-diffusion. This leads to radiation-accelerated ordering processes in the Fe–Ni and Fe–Ni–P alloys. At temperatures around 800 K, homogenization of the solid solution occurs. The details and stages of the dissociation of vacancy-impurity complexes are discussed.

Acknowledgments: The research was carried out under the state assignment from the Ministry of Science and Higher Education of the Russian Federation (theme Function, No. 122021000035-6).

Keywords: irradiation, electrons, electrical resistivity, Fe–Ni invar alloy, phosphorus, point defect sinks, solid solution separation

References:

  1. Dimitrov, C. and Dimitrov, O. Composition dependence of defect properties in electron-irradiated Fe-Cr-Ni solid solutions. Journal of Physics F: Metal Physics, 1984, 14 (4), 793–811. DOI 10.1088/0305-4608/14/4/005.
  2. Huguenin, D., Moser, P., and Vanoni, F. Vacancy clustering in electron-irradiated FeNiCr austenitic alloys. Journal of Nuclear Materials, 1989, 169 (2), 73–78. DOI: 10.1016/0022-3115(89)90522-9.
  3. Chamberod, A., Laugier, J., and Pénisson, J. Electron irradiation effects on iron–nickel invar alloys. Journal of Magnetism and Magnetic Materials, 1979, 10 (2–3), 139–144. DOI: 10.1016/0304-8853(79)90165-3.
  4. Arbuzov, V.L., Druzhkov, A.P., and Danilov, S.E. Effects of phosphorus on defects accumulation and annealing in electron-irradiated Fe–Ni austenitic alloys. Journal of Nuclear Materials, 2001, 295 (2–3), 273–280. DOI: 10.1016/S0022-3115(01)00505-0.
  5. Arbuzov, V.L., Danilov, S.E., Druzhkov, A.P., and Pavlov, V.A. Accumulation and annealing of radiation defects in Fe-Ni and Fe-Ni-P electron-irradiated alloys. The Physics of Metals and Metallography, 2000, 89 (4), 373–377.
  6. Druzhkov, A.P., Danilov, S.E., Perminov, D.A., and Arbuzov, V.L. Formation and evolution of intermetallic nanoparticles and vacancy defects under irradiation in Fe-Ni-Al ageing alloy characterized by resistivity measurements and positron annihilation. Journal of Nuclear Materials, 2016, 476, 168–178. DOI: 10.1016/j.jnucmat.2016.04.045.


PDF      

Article reference

Danilov S. E. Separation in Fe–ni and Fe–ni–p Alloys under Electron Irradiation and Isochronous Annealing // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 6. - P. 159-164. -
DOI: 10.17804/2410-9908.2023.6.159-164. -
URL: http://eng.dream-journal.org/issues/2023-6/2023-6_427.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru