Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2023 Issue 4

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

M. Y. Filimonov, N. A. Vaganova

SOME PROBLEMS OF HEAT AND MASS TRANSFER DURING THE OPERATION OF ENGINEERING SYSTEMS IN MULTIPHASE ENVIRONMENTS

DOI: 10.17804/2410-9908.2023.4.015-028

Three types of problems related to problems of heat and mass transfer in the soil are considered. The first class of problems deals with the diagnostics of damage of underground pipelines by thermal fields on the soil surface. The second type studies the dynamics of changes in the temperature of a geothermal reservoir depending on the temperature of the water entering this reservoir and the pressure gap between injection and production wells. The third-type problems consider the propagation of non-stationary thermal fields in the soil from operated engineering systems in the permafrost. The main attention is paid to long-term forecasting of the propagation of non-stationary thermal fields in the frozen soil between operating production wells of northern oil and gas fields. In problems of the first two classes, which served as a basis for the development of problems of the third type, water filtration in the soil is considered, and thermal fields propagate in single-phase media. The third-class problems take into account possible phase transitions in the soil when describing non-stationary thermal fields in permafrost soils, leading to Stefan-type problems. Accounting for water migration for the specific third-type problems on the determination of the radius of frozen soil thawing from production wells in northern oil and gas fields does not significantly affect this process since lateral water migration above the groundwater level is minimal. Therefore, only the latent heat of the initial water content is taken into consideration. This paper discusses a mathematical model containing the most significant physical and climatic data affecting the distribution of thermal fields in permafrost rocks and presents the results of numerical calculations.

Acknowledgments: The Uran supercomputer, IMM UB RAS, was used in the numerical calculations.

Keywords: heat and mass transfer, wells, permafrost, computer modelling

References:

  1. Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H.H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M.O., Lewkowicz, A.G., Panda, S.K., Romanovsky, V., Way, R.G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews, 2019, 193, 136–155. DOI: 10.1016/j.earscirev.2019.04.023.
  2. Obu, J. How much of the Earth's surface is underlain by permafrost? Journal of Geophysical Research: Earth Surface, 2021, 126, e2021JF006123. DOI: 10.1029/2021JF006123.
  3. Romanovsky, V.E., Drozdov, D.S., Oberman, N.G., Malkova, G.V., Kholodov, A.L., Marchenko, S.S., Moskalenko, N.G., Sergeev, D.O., Ukraintseva, N.G., Abramov, A.A., Gilichinsky, D.A., and Vasiliev, A.A. Thermal state of permafrost in Russia. Permafrost and Periglacial Processes, 2010, 21, 136–155. DOI: 10.1002/ppp.683.
  4. Nitzbon, J., Westermann, S., Langer, M., Martin, Léo C.P., Strauss, J., Laboor, S., and Boike, J. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nature Communications, 2020, 11, 2201. DOI: 10.1038/s41467-020-15725-8.
  5. Vaganova, N. and Filimonov, M.Yu. Different shapes of constructions and their effects on permafrost. AIP Conference Proceedings, 2016, 1789, 020019. DOI: 10.1063/1.4968440.
  6. Gladkikh, V.S., Ilin, V.P., Petukhov, A.V., and Krylov, A.M. Numerical modeling of non-stationary heat problems in a two-phase medium. Journal of Physics: Conference Series, 2021, 1715 (1), 012002. DOI: 10.1088/1742-6596/1715/1/012002.
  7. Wu, Q., Zhang, Z., Gao, S., and Ma, W. Thermal impacts of engineering activities on permafrost in different alpine ecosystems in Qinghai-Tibet Plateau, China. The Cryosphere, 2016, 10, 1695–1706. DOI: 10.5194/tc-10-1695-2016.
  8. Schneider von Deimling, T., Lee, H., Ingeman-Nielsen, T., Westermann, S., Romanovsky, V., Lamoureux, S., Walker, D.A., Chadburn, S., Trochim, E., Cai, L., Nitzbon, J., Jacobi, S., and Langer, M. Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales. The Cryosphere, 2021, 15, 2451–2471. DOI: 10.5194/tc-15-2451-2021.
  9. Nelson, F.E., Anisimov, O.A., and Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature, 2001, 410 (6831), 889–890. DOI: 10.1038/35073746.
  10. Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D., Miller, J.R., Ning, L., Ohmura, A., Palazz, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S.N., and Yang, D.Q. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5, 424–430. DOI: 10.1038/nclmate2563.
  11. Guo, D. and Wang, H. CMIP5 permafrost degradation projection: a comparison among different regions. Journal of Geophysical Research: Atmospheres, 2016, 121 (9), 4499–4517. DOI: 10.1002/2015JD024108.
  12. Guo, D. and Wang, H. Permafrost degradation and associated ground settlement estimation under 2°C global warming. Climate Dynamics, 2017, 49, 2569–2583. DOI: 10.1007/s00382-016-3469-9.
  13. Chadburn, S.E., Burke, E.J., Cox, P.M., Friedlingstein, P., Hugelius, G., and Westermann, S. An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7, 340–344. DOI: 10.1038/nclimate3262.
  14. Wang, K., Zhang, T., Zhang, X., Clow, G.D., Jafarov, E.E., Overeem, I., Romanovsky, V., Peng, X., and Cao, B. Continuously amplified warming in the Alaskan Arctic: implications for estimating global warming hiatus. Geophysical Research Letters, 2017, 44, 9029–9038. DOI: 10.1002/2017GL074232.
  15. Vasiliev, A.A., Drozdov, D.S., Gravis, A.G., Malkova, G.V., Nyland, K.E., and Streletskiy, D.A. Permafrost degradation in the Western Russian Arctic. Environmental Research Letters, 2020, 15, 045001. DOI: 10.1088/1748-9326/ab6f12.
  16. Alexandrov, G.A., Ginzburg, V.A., Insarov, G.E., and Romanovskaya, A.A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Climatic Change, 2021, 169 (3), 1–11. DOI: 10.1007/s10584-021-03292-w.
  17. Biskaborn, B.K., Smith, S.L, Noetzli, J., et al. Permafrost is warming at a global scale. Nature Communications, 2019, 10 (1), 264. DOI: 10.1038/s41467-018-08240-4.
  18. Moiseev, V., Komarova, T., and Petryaev, A. Year-round thermal stabilization of permafrost soils during road construction in the northern climatic zone of Russia. E3S Web Conf., 2023, 383, 02010. DOI: 10.1051/e3sconf/202338302010.
  19. Vaganova, N.A. and Filimonov, M.Yu. Simulation of cooling devices and effect for thermal stabilization of soil in a cryolithozone with anthropogenic impact. Lecture Notes in Computer Science, 2019, 11386, 580–587. DOI 10.1007/978-3-030-11539-5_68.
  20. Vaganova, N.A. Mathematical model of testing of pipeline integrity by thermal fields. AIP Conference Proceedings, 2014, 1631, 37–41. DOI 10.1063/1.4902455.
  21. Vaganova, N.A. Simulation of thermal fields from an underground pipeline at the ground surface. AIP Conference Proceedings, 2017, 1910, 020005. DOI 10.1063/1.5013942.
  22. Vaganova, N.A. and Filimonov, M.Yu. Numerical analysis and diagnostics of pipelines by thermal fields. AIP Conference Proceedings, 2020, 2312, 050026. DOI: 10.1063/5.0035412.
  23. Bashurov, V.V., Vaganova, N.A., and Filimonov, M.Yu. Numerical Simulation of Thermal Conductivity Processes with Fluid Filtration in Soil. Vychislitelnye Tekhnologii, 2011, 16 (4), 3–18. (In Russian).
  24. Vaganova, N. and Filimonov, M.Yu. Refinement of model of an open geothermal system. AIP Conference Proceedings, 2016, 1789, 020020. DOI: 10.1063/1.4968441.
  25. Filimonov, M.Yu., Akimova, E.N., Misilov, V.E., and Vaganova, N.A. Numerical simulation of temperature fields in an open geothermal system on multicore processors. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8 (2), 76. DOI: 10.1007/s40948-022-00386-2.
  26. Filimonov, M.Yu. and Vaganova, N.A. Optimal simulation of design and operation of geothermal systems. In: Y. Noorollahi, M.N. Naseer, M.M. Siddiqi, eds. Utilization of Thermal Potential of Abandoned Wells: Fundamentals, Applications and Research, Academic Press, 2022, 3, 35–57. DOI: 10.1016/B978-0-323-90616-6.00003-8.
  27. Kamnev, Ya.K., Filimonov, M.Yu., Shein, A.N., and Vaganova, N.A. Automated monitoring the temperature under buildings with pile foundations in Salekhard (preliminary results). Geography, Environment, Sustainability, 2021, 14 (4), 75–82. DOI: 10.24057/2071-9388-2021-021.
  28. Filimonov, M.Yu., Kamnev, Ya.K., Shein, A.N., and Vaganova, N.A. Modeling the temperature field in frozen soil under buildings in the city of Salekhard taking into account temperature monitoring. Land, 2022, 11 (7), 1102. DOI: 10.3390/land11071102.
  29. Filimonov, M.Yu. and Vaganova N.A. Thawing of permafrost during the operation of wells of North-Mukerkamyl oil and gas field. Journal of Siberian Federal University. Mathematics & Physics, 2021, 14 (6), 795–804. DOI: 10.17516/1997-1397-2021-14-6-795-804.
  30. Filimonov, M. and Vaganova, N. Permafrost thawing from different technical systems in Arctic regions. IOP Conference Series: Earth and Environmental Science, 2017, 72, 012006. DOI: 10.1088/1755-1315/72/1/012006.
  31. Samarskii, A.A. and Moiseyenko, B.D. An economic continuous calculation scheme for the Stefan multidimensional problem. USSR Computational Mathematics and Mathematical Physics, 1965, 5 (5), 43–58. DOI: 10.1016/0041-5553(65)90004-2.
  32. Samarsky, A.A. and Vabishchevich, P.N. Computational Heat Transfer, Vol. 2: The Finite Difference Methodology, Wiley, New York, Chichester, 1995, 432 p.
  33. Lamontagne-Hallé, P., McKenzie, J.M., Kurylyk, B.L., Molson, J., and Lyon, L.N. Guidelines for cold-regions groundwater numerical modeling. WIREs Water, 2020, 7 (6). DOI: 10.1002/wat2.1467.
  34. Yang, X., Hu, J., Ma, R., and Sun, Z. Integrated hydrologic modelling of groundwater-surface water interactions in cold regions. Front. Earth Sci., 2021, 9, 721009. DOI: 10.3389/feart.2021.721009.
  35. Hinkel, K.M., Outcalt, S.I., and Taylor, A.E. Seasonal patterns of coupled flow in the active layer at three sites in northwest north America. Canadian Journal of Earth Sciences, 1997, 34 (5), 667–678. DOI: 10.1139/e17-053.
  36. Kurylyk, B.L. and Watanabe, K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Advances in Water Resources. 2013, 60, 160–177. DOI: 10.1016/j.advwatres.2013.07.016.
  37. Kurylyk, B.L., Hayashi, M., Quinton, W.L., McKenzie, J.M., and Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resources Research, 2016, 52, 20, 1286–1305. DOI: 10.1002/2015WR018057.
  38. Magnússon, R.Í., Hamm, A., Karsanaev, S.V., Limpens, J., Kleijn, D., Frampton, A., Maximov, T.C., and Heijmans, M.M.P.D. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nature Communications, 2022, 13, 1556. DOI: 10.1038/s41467-022-29248-x.
  39. Painter, S.L, Karra, S. Constitutive model for unfrozen water content in subfreezing unsaturated soils. Vadose Zone Journal, 2014, 13 (4), 1–8. DOI: 10.2136/vzj2013.04.0071.
  40. Sjöberg, Y., Coon, E., Sannel, A.B.K.R., Pannetier, R., Harp, D., Frampton, A., Painter, S.L., and Lyon, S.W. Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resources Research, 2016, 52 (3), 1591–1606. DOI: 10.1002/2015WR017571.
  41. Orgogozo L., Prokushkin A.S., Pokrovsky, O.S., Grenier, C., Quintard, M., Viers, J., Audry, S. Water and energy transfer modelling in a permafrost-dominated, forested catchment of Central Siberia: the key role of rooting depth. Permafrost and Periglacial Processes, 2019, 30, 75–89. DOI: 10.1002/ppp.1995.
  42. Sergeyev F., Kiselyov, F. Iterative refinement of the boundary condition in the numerical solution of the thermoelasticity problem. In: P. Akimov, N. Vatin, eds. Proceedings of FORM 2021, Series Lecture Notes in Civil Engineering, Springer, Cham, 2022, 170, 329–338. DOI: 10.1007/978-3-030-79983-0_31.


PDF      

Article reference

Filimonov M. Y., Vaganova N. A. Some Problems of Heat and Mass Transfer During the Operation of Engineering Systems in Multiphase Environments // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 4. - P. 15-28. -
DOI: 10.17804/2410-9908.2023.4.015-028. -
URL: http://eng.dream-journal.org/issues/2023-4/2023-4_398.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru