Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2023 Issue 1

All Issues
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

Yu. V. Khudorozhkova, S. M. Zadvorkin, S. V. Burov, and I. S. Kamantsev

DETECTION OF PREFRACTURE ZONES IN STRUCTURAL MATERIALS BY MAGNETIC AND OPTICAL METHODS

DOI: 10.17804/2410-9908.2023.1.024-040

The study of the applicability of magnetic and optical methods to the detection
of prefracture zones under fatigue degradation of structural materials is exemplified by the 09G2S steel. The regularities of changes in the signal of an attached fluxgate gradiometer with the increasing number of loading cycles have been revealed; namely, significant changes in the gradiometer readings on individual specimen surface areas prove to result from the formation of fracture zones. The change in the value of the coefficient of correlation among the speckle images is studied at different stages of cyclic testing. The appearance of speckle image heterogeneity is shown to be due to fracture nucleation. Thus, the applicability of magnetic and speckle-interferometric methods to detecting prefracture zones in objects under cyclic loading is substantiated.

Acknowledgments: The work was performed under state assignment No. AAAA-A18-118020790148-1. The study used the equipment of the Plastometriya shared research facilities. We appreciate the assistance of Prof. A. P. Vladimirov, staff member of the laboratory of engineering diagnostics, IES UB RAS, who has developed the original procedure of dynamic optical speckle interferometry.

Keywords: magnetic state, flux gate, gradiometer, leakage field, speckle image, surface profile, cyclic testing, nondestructive testing, pipe steel

References:

  1. Panin V.E., Derevyagina L.S., Deryugin Ye.Ye., Panin A.V., Panin S.V., Antipina N.A. Prefracture stage mechanisms in physical mesomechanics. Physical Mesomechanics, 2003, vol. 6, No. 5–6, pp. 63–71. (In Russian).
  2. Panin V.E. Overview on mesomechanics of plastic deformation and fracture of solids. Theoretical and Applied Fracture Mechanics, 1998, vol. 30, No. 1, pp. 1–11. DOI: 10.1016/S0167-8442(98)00038-X.
  3. Gorkunov E.S. Magnetic Structural-Phase Analysis as Applied to Diagnosing and Evaluating the Lifetime of Products and Structural Components. Part 1. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 1, pp. 6–40. DOI: 10.17804/2410-9908.2015.1.006-040. Available at: https://dream-journal.org/DREAM_Issue_1_2015_Gorkunov_E._S..pdf
  4. Gilanyi A., Morishita K., Sukegawa T., Uesaka M., Miya K. Magnetic nondestructive evaluation of fatigue damage of ferromagnetic steels for nuclear fusion energy systems. Fusion Engineering and Design, 1998, vol. 42, iss. 1–4, pp. 485–491. DOI: 10.1016/S0920-3796(98)00180-X.
  5. Plekhov O.A., Panteleev I.A., and Leontiev V.A. Peculiarities of heat release and generation of acoustic emission signals in armco iron under cyclic deformation. Fiz. Mezomekh., 2009, vol. 12, No. 5, pp. 37–43.
  6. Boulanger T., Chrysochoos A., Mabru C., Galtier A. Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. International Journal of Fatigue, 2004, vol. 26, iss. 3, pp. 221–229. DOI: 10.1016/S0142-1123(03)00171-3.
  7. Palumbo D., Galietti U. Characterisation of steel welded joints by infrared thermographic methods. Quantitative InfraRed Thermography Journal, 2014, vol. 11 (1), pp. 29–42. DOI: 10.1080/17686733.2013.874220.
  8. Benaarbia A., Chrysochoos A., Robert G. In: Photomechanics Conference: book of abstracts, 25–27 May 2015, Delft, Netherlands, 2015, pp. 86–88.
  9. Gorkunov E.S., Mushnikov A.N. Magnetic methods of evaluating elastic stresses in ferromagnetic steels (review). Kontrol'. Diagnostika (“Testing. Diagnostics”), 2020, vol. 23, iss. 12, pp. 4–23. DOI: 10.14489/td.2020.12.pp.004-023. (In Russian).
  10. Gorkunov E.S., Zadvorkin S.M., Dimitrov R. Application of magnetic methods for detection of localization zones of plastic deformation in structural steels. Kontrol'. Diagnostika (“Testing. Diagnostics”), 2017, iss. 1, pp. 12–15. DOI: 10.14489/td.2017.01.pp.012-015. (In Russian).
  11. Wang Z.F., Li J., Ke W., Zhu Z. Characteristics of acoustic emission for A537 structural steel during fatigue crack propagation. Scripta Metallurgica et Materialia, 1992, vol. 27 (5), pp. 641–646. DOI: 10.1016/0956-716X(92)90354-H.
  12. Razumovsky Igor A. Interference-Optical Methods of Solid Mechanics, Springer–Verlag, Berlin, Heidelberg, 2011.
  13. Vildeman V.E., Tretyakov M.P., Tretyakova T.V., Bulbovich R.V. et al. Eksperimentalnye issledovaniya svoistv materialov pri slozhnykh termomekhanicheskikh vozdeystviyakh [Experimental Studies of the Properties of Materials under Complex Thermomechanical Processing]. Moscow, Fizmatlit Publ., 2012, 204 p. (In Russian).
  14. Gorkunov E.S. Magnetic Structural–phase Analysis. Part II. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 3, pp. 6–50. DOI: 10.17804/2410-9908.2015.3.006-050. Available at: https://dream-journal.org/DREAM_Issue_3_2015_Gorkunov_E._S._006_050.pdf
  15. Murav’ev V.V., Volkova L.V., Platunov A.V., and Kulikov V.A. An electromagnetic-acoustic method for studying stress-strain states of rails. Russian Journal of Nondestructive Testing, 2016, vol. 52 (7), pp. 370–376. DOI: 10.1134/S1061830916070044.
  16. Lasar J., Hola M., and Cip O. Differential interferometry for real-time measurement in high cycle fatigue metal testing. In: Proceedings of the Conference PhotoMechanics : book of abstracts, Delft University, Netherlands, 25–27 May 2015, pp. 64–65.
  17. Serbin Evgeny D., Kostin Vladimir N., Vasilenko Olga N., Ksenofontov Danila G., Gerasimov Evgeny G., Terentev Pavel B. Influence of the two-stage plastic deformation on the complex of the magnetoacoustic characteristics of low-carbon steel and diagnostics of its structural state. NDT & E International, 2020, vol. 116, article 102330. DOI: 10.1016/j.ndteint.2020.102330.
  18. Vladimirov A.P. Dynamic speckle interferometry of microscopic and macroscopic processes in deformable media. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 6, pp. 27–57. DOI: 10.17804/2410-9908.2015.6.027-057. Available at: https://dream-journal.org/DREAM_Issue_6_2015_Vladimirov_A.P._027_057.pdf
  19. Arutyunyan A.R., Zimin B.A., Sud'enkov Yu.V. The investigation of cyclic durability of construction materials by the method of optical-acoustic spectroscopy. Vestnik Sankt-Peterburgskogo Universiteta, Matematika, Mekhanika, Astronomiya, 2008, No. 3, P. 88–96. (In Russian).
  20. Ivanova V.S. Razrushenie metallov [Metal Destruction]. Moscow, Metallurgiya Publ., 1979, 168 p. (In Russian).
  21. Botvina L.R. Razrushenie: kinetika, mekhanizmy, obshchie zakonomernosti [Destruction: Kinetics, Mechanisms, General Regulations]. Moscow, Nauka Publ., 2008. (In Russian).
  22. Terentyev V.F., Petukhov A.N. Ustalost vysokoprochnykh metallicheskikh materialov [Fatigue of High Strength Metallic Materials]. Moscow, IMET RAS–ZIAM Publ., 2013, 515 p. (In Russian).
  23. Vinogradov A.Yu., Hashimoto S. Fatigue of ultrafine-grained materials produced by equal-channel angular pressing. Russian Metallurgy (Metally), 2004, No. 1, pp. 42–51.
  24. Nichipuruk A.P., Stashkov A.N., Kostin V.N., Korkh M.K. Possibilities of magnetic inspection of plastic deformations preceding failures of low-carbon steels constructions. Russian Journal of Nondestructive Testing, 2009, vol. 45 (9), pp. 616–622.
  25. Terentyev V.F. Ustalostnaya prochnost metallov i splavov [Fatigue Strength of Metals and Alloys]. Moscow, Intermet Inzhiniring Publ., 2002. (In Russian).
  26. Bida G.V., Nichipuruk A.P. Magnitnye svoystva termoobrabotannykh staley [Magnetic Properties of Heat-treated Steels]. Ekaterinburg, UrO RAN Publ., 2005. (In Russian).
  27. Gorkunov E.S. , Povolotskaya A.M., Zadvorkin S.M.,  Putilova E.A., Mushnikov A.N., Bazulin E.G., Vopilkin A.Kh. Some Features in the Behavior of Magnetic and Acoustic Characteristics of Hot-Rolled 08G2B Steel under Cyclic Loading. Russian Journal of Nondestructive Testing, 2019, vol. 55, No. 11, pp. 827–836. DOI: 10.1134/S1061830919110044.
  28. Gorkunov E.S., Savrai R.A., Makarov A.V., Zadvorkin S.M. Magnetic Techniques for Estimating Elastic and Plastic Strains in Steels under Cyclic Loading. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 2, pp. 6–15. DOI: 10.17804/2410-9908.2015.2.006-015. Available at: https://dream-journal.org/DREAM_Issue_2_2015_Gorkunov_E.S._et_al._6_15.pdf
  29. Gorkunov E.S., Povolotskaya A.M., Zadvorkin S.M., Putilova E.A., Mushnikov A.N. The Effect of Cyclic Preloading on the Magnetic Behavior of the Hot-Rolled 08G2B Steel Under Elastic Uniaxial Tension. Research in Nondestructive Evaluation, 2021, vol. 32, No. 6, pp. 276–294. DOI: 10.1080/09349847.2021.2002487.
  30. Gorkunov E.S., Zadvorkin S.M., Mushnikov A.N., Smirnov S.V., Yakushenko E.I. Effect of mechanical stresses on the magnetic characteristics of pipe steel. Journal of Applied Mechanics and Technical Physics, 2014, vol. 55 (3), pp. 530–538. DOI:10.1134/S002189441403016X.
  31. Mushnikov A.N., Putilova E.A., Povolotskaya A.M., Goruleva L.S. Effect of plastic deformation on the structure and magnetic properties of hull steel. Metallovedenie i Termicheskaya Obrabotka Metallov, 2022, No. 11 (809), pp. 3–10. DOI: 10.30906/mitom.2022.11.3-10. (In Russian).


PDF      

Article reference

Detection of Prefracture Zones in Structural Materials by Magnetic and Optical Methods / Yu. V. Khudorozhkova, S. M. Zadvorkin, S. V. Burov, and I. S. Kamantsev // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 1. - P. 24-40. -
DOI: 10.17804/2410-9908.2023.1.024-040. -
URL: http://eng.dream-journal.org/issues/2023-1/2023-1_392.html
(accessed: 05/22/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru