Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2022 Issue 5

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

Yu. V. Nikolin, D. I. Vichuzhanin, N. B. Pugacheva, F. I. Mezin

STUDYING THE ADHESION STRENGTH OF PLASMA POWDER METAL COATINGS ON THE SURFACE OF GRAPHITE

DOI: 10.17804/2410-9908.2022.5.023-039

Coatings applied onto the surface of specimens made of UHP electrode graphite are studied. Coatings are applied by thermal spraying in two stages: spraying of a sublayer (layer I) of the powder materials being tested; spraying of the main layer of the plasma coating, consisting of a mechanical mixture of fine spherical aluminum (Al) and copper (CuCr1) powders in an equal volume ratio. The adhesion strength between the coating and the graphite surface is studied as dependent on the following factors: sublayer thickness; the type of preliminary surface preparation; the chemical composition of the powder material of the sublayer. It has been found that the highest adhesion strength between the coating and the graphite base is achieved when the sublayer thickness is 80 µm, when a thread with a depth of 1.0 mm is cut on the base surface, and when Al powder is used as a sublayer.

Acknowledgment: The work was performed under state assignment no. AAAA-A18-118020790145-0. The tests were performed with the equipment installed at the Plastometriya shared research facilities affiliated to the Institute of Engineering Science, UB RAS.

Keywords: plasma powder coating, adhesion strength, graphitized material

References:

  1. Rykalin N.N., Kulagin M.X., Shorshorov O.A. et al. In: Plazmennye protsessy v metallurgii i tekhnologii neorganicheskikh materialov [Plasma Processes in Metallurgy and Technology of Inorganic Materials]. Moscow, Nauka Publ., 1973. (In Russian).
  2. Budinovsky S.А., Muboyadzhyan S.A., Gayamov A.M., Matveev P.V. Development of Ion-Plasma Refractory Metallic Layers of Heat-Insulating Coatings for Cooled Turbine Rotor Blades. Metal Science and Heat Treatment, 2014, vol. 55, pp. 652–657. DOI: 10.1007/s11041-014-9684-2.
  3. Tarasenko Yu.P., Tsareva N.N., Berdnik O.B. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment. Thermophysics and Aeromechanics, 2014, vol. 1, No. 5, pp. 641–650. DOI: 10.1134/S0869864314050138.
  4. Guzanov B.N., Kositsyn S.V., Pugacheva N.B. Uprochnyayushchie zashchitnye pokrytiya v mashinostroenii [Reinforcing Protective Coatings in Mechanical Engineering]. Yekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2004, 244 p. ISBN: 5-7691-1405-3. (In Russian).
  5. Shevchenko O.I., Trekin G.E. & Farber V.M. Distribution of chemical elements in structural components of a facing of a self-fluxing nickel alloy. Met Sci Heat Treat, 1997, 39, pp. 233–235. DOI: 10.1007/BF02467225.
  6. Otsubo F., Era, H., Kishitake K. Structure and phases in nickel-base selffluxing alloy coating containing high chromium and boron. Journal of Thermal Spray Technology, 2000, vol. 9, iss. 1, pp. 107–113. DOI: 10.1361/105996300770350131.
  7. Kulik A.Ya., Borisov Yu.S., Mnukhin A.S., and Nikitin M.D. Gazotermicheskoe napylenie kompositsionnykh poroshkov [Gas-Thermal Deposition of Composite Powders]. Leningrad, Mashinostroenie Publ., 1985. (In Russian).
  8. Uusitalo Mikko, Vuoristo Petri, Mäntylä Tapio. Elevated temperature erosion-corrosion of thermal sprayed coatings in chlorine containing environments. Wear, 2002, vol. 252, iss. 7–8, pp. 586–594. DOI: 10.1016/S0043-1648(02)00014-5.
  9. Matthews S., Schweizer M. Optimization of arcsprayed Ni-Cr-Ti coatings for high temperature corrosion applications. Journal of Thermal Spray Technology, 2013, vol. 22, iss. 4. pp. 538–550. DOI: 10.1007/s11666-013-9914-y.
  10. Guzanov B.N., Pugacheva N.B., Bykova T.M. Corrosion and erosion resistance of the combined multilayer coating for the protection of critical parts of modern gas turbine engines. Diagnostics, Resource and Mechanics of materials and structures, 2021, iss. 2, pp. 6–21. DOI: 10.17804/2410-9908.2021.2.006-021. Available at: https://dream-journal.org/issues/2021-2/2021-2_317.html
  11. Sivakumar R., Mordike B.L. High temperature coatings for gas turbine blades: a review. Surface and Coatings Technology, 1989, vol. 37, iss. 2, pp. 139–160. DOI: 10.1016/0257- 8972(89)90099-6.
  12. Mrdak M.R. Mechanical properties and metallographic analysis of plasma spray ABS – Ni5.5wt.%Al5wt.%Mo coatings. Vojnotehnički glasnik, 2019, vol. 67, iss. 3, pp. 573–587. DOI: 10.5937/vojtehg67-17424.
  13. Pugacheva N.B. Current trends in the development of heat-resistant coatings based on iron, nickel and cobalt aluminides. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 3, pp. 51–82. DOI: 10.17804/2410-9908.2015.3.051-082. Available at: https://dream-journal.org/issues/2015-3/2015-3_30.html
  14. Guzanov B.N., Obabkov N.V., Migacheva G.N. Development and research of multi-layer composite coatings high temperature. Sciences of Europe, 2017, No. 16 (16), pp. 261–265.
  15. Sidhu S.S., Prakash S. Performance of NiCrAlY, Ni–Cr, Stellite-6 and Ni3Al coatings in Na2SO4–60% V2O5 environment at 900° under cyclic conditions. Surface and Coatings Technology, 2006, vol. 201, iss. 3–4, pp. 1643–1654. DOI: 10.1016/j.surfcoat.2006.02.035.
  16. Pugacheva N.B., Guzanov B.N., Obabkov N.V., Bykova T.M., Michurov N.S. Studying the structure and adhesion strength of thermal barriers coating. AIP Conference Proceedings, 2019, vol. 2176, pp. 030013-1–030013-4. DOI: 10.1063/1.5135137.
  17. Guzanov B.N., Pugacheva N.B., Alekseev V.D., Slukin Y.Yu. Features of creating combined heat-resistant multicomponent coatings for high-temperature. Bulletin PNRPU. Mechanical engineering, materials science, 2020, vol. 22, No. 3, pp. 12–19. DOI: 10.155593/2224-9877/2020.3.02. (In Russian).
  18. Fialkov A.S. Formirovanie struktury i svoistv uglegrafitovykh materialov [Formation of the Structure and Properties of Carbon-Graphite Materials]. Moscow, Metallurgiya Publ., 1965. (In Russian).
  19. Kretzschmar Eberhard, Schwarz Herrmann. Napylenie metallov, keramiki i plastmass [Spray Deposition of Metals, Ceramics, and Plastics, transl. Germ.]. Moscow, Mashinostroenie Publ., 1966. (In Russian).
  20. Korobov Yu. S., Panov V. I., Razikov N. M. In: Osnovnye metody i materialy gazotermicheskogo napyleniya [Basic methods and materials of thermal spraying]. Ekaterinburg, Izdatel'stvo Ural'skogo universiteta Publ., 2016, 77 p. (In Russian).
  21. Fialkov A.S., Varlakov V.P., Smirnova T.Yu. Microstructure of petroleum and pitch cokes. Himiya Tverdogo Topliva, 1994, No. 2, pp. 49–53. (In Russian).
  22. Ubbelohde A.R., Lewis F.A. Graphite and its crystal compounds. New York, Oxford University Press, 1960, 217 p.
  23. Dorozhkin N.N. Metodicheskie rekomendatsii po opredeleniyu adgezionnoy prochnosti pokrytiy [Guidelines for determining the adhesive strength of coatings]. Minsk, INDmash Publ., 1985, 54 p. (In Russian).
  24. Ryzhov E.V., Suslov A.G., and Fedorov V.P. Tekhnologicheskoe obespechenie ekspluatatsionnykh svoistv detalei mashin [Technologies Ensuring the Required Operational Properties of Machine Parts]. Moscow, Mashinostroenie Publ., 1979, 176 p. (In Russian).
  25. Rodichev A.Yu. Study of adhesion strength of journal coatings of rotor-bearing nodes of a test rig. Izvestiya TulGU. Tekhnicheskie nauki, 2018, vol. 9, pp. 269–276. (In Russian).
  26. Pustyl'nik E. I. Statisticheskie metody analiza i obrabotki nablyudenij [Statistical Methods of Analysis and Processing of Observations]. Moscow, Nauka Publ., 1968. (In Russian).
  27. Stepnov M.N. and Shavrin A.V. Statisticheskie metody obrabotki rezul'tatov mekhanicheskikh ispytaniy: spravochnik [Handbook of Statistical Methods of Processing the Results of Mechanical Tests]. Moscow, Mashinostroenie Publ., 2005. (In Russian).

                         

PDF      

Article reference

Studying the Adhesion Strength of Plasma Powder Metal Coatings on the Surface of Graphite / Yu. V. Nikolin, D. I. Vichuzhanin, N. B. Pugacheva, F. I. Mezin // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 5. - P. 23-39. -
DOI: 10.17804/2410-9908.2022.5.023-039. -
URL: http://eng.dream-journal.org/issues/2022-5/2022-5_373.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru