Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2022 Issue 4

All Issues
2024 Issue 3
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






A. N. Mushnikov, S. M. Zadvorkin, E. N. Perunov, S. V. Vyskrebencev, R. F. Izmajlov, D. I. Vichuzhanin, N. N. Soboleva, A. S. Igumnov


DOI: 10.17804/2410-9908.2022.4.050-060

An original experimental facility for studying the physical properties of materials during elastic-plastic deformation along two axes has been created. The facility has no ferromagnetic parts in the working area, thus enabling us to make more accurate magnetic measurements. Biaxial deformation is simulated by the finite element method in order to optimize the geometry of the specimen and to determine the stress state in the central zone of the specimen. Test experiments on the effect of biaxial tension on the coercive force of the 12G2S are performed.

Acknowledgments: The work was performed under the state assignment on theme No. AAAA-A18-118020790148-1. The equipment of the Plastometriya shared research facilities center of the IES UB RAS was used to determine the initial properties of the specimen material. The Uran supercomputer of the IMM UB RAS was used in the simulation.

Keywords: biaxial deformation, plane stress state, nondestructive testing


  1. Schneider C.S., Richardson J.M. Biaxial magnetoelasticity in steels. Journal of Applied Physics, 1982, vol. 53, pp. 8136–8138. DOI: 10.1063/1.330341.
  2. Sablik M.J., Jiles D.C. Modeling the Effects of Torsional Stress on Hysteretic Magnetization. IEEE Transactions on Magnetics, 1999, vol. 35, No. 1, part 2, pp. 498–504. DOI: 10.1109/20.737472.
  3. Kulak S.M., Novikov V.F., Probotyuk V.V., Vatsenkov S.M., Fursov E.S. Magnetic testing of stressed state of hydrotested gas-separator wall. Russian Journal of Nondestructive Testing, 2019, vol. 55, pp. 225–232. DOI: 10.1134/S1061830919030070.
  4. Kulak S.M., Novikov V.F., Mitrofanov D.D. Evaluation of stresses in a presurized vessel by magnetoelastic demagnetization. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 6, pp. 6–14. DOI: 10.1088/1757-899X/154/1/012004. Available at: http://dream-journal.org/issues/2019-6/2019-6_272.html (accessed: 22.04.2022).
  5. Kulak S.M., Novikov V.F., Baranov A.V. Control of mechanical stresses of high pressure container walls by magnetoelastic method. IOP Conf. Ser.: Mater. Sci. Eng, 2016, vol. 154, 012004. DOI: 10.1088/1757-899X/154/1/012004.
  6. Zakharov V.A., Ul'yanov A.I., Gorkunov E.S. Regularities of the change in the coercive force under biaxial asymmetric deformation of steel 3. Russian Journal of Nondestructive Testing, 2010, vol. 46. pp. 194–205. DOI: 10.1134/S1061830910030071.
  7. Novikov V.F., Zakharov V.A., Ul’yanov A.I., Sorokina S.V., Kudryashov M.E. The influence of biaxial elastic deformation on the coercive force and local remanent magnetization of construction steels. Russian Journal of Nondestructive Testing, 2010, vol. 46, pp. 520–526. DOI: 10.1134/S1061830910070065.
  8. Zakharov V.A., Ul’yanov A.I. & Gorkunov E.S. Coercive force of ferromagnetic steels under the biaxial symmetrical tension of a material. Russian Journal of Nondestructive Testing, 2011, vol. 47, pp. 359–368. DOI: 10.1134/S1061830911060106.
  9. Langman R. Magnetic properties of mild steel under conditions of biaxial stress. IEEE Transactions on magnetics, 1990, vol. 26, No. 4, pp. 1246–1251. DOI: 10.1109/20.54015.
  10. Aginey R.V., Islamov R.R., Mamedova E.A. Determination of stress-strain state of the pressure pipeline section by the coercive force measurement results. Science & Technologies: Oil and Oil Products Pipeline Transportation, 2019, vol. 9, No. 3, pp. 284–294. DOI: 10.28999/2541-9595-2019-9-3-284-294.
  11. Berdnik Maria, Berdnik Aleksandr. Aspects of the coercimetery application to estimate parameters of the structure strain-stress state. NDT WORLD, 2017, vol. 20, No. 4, pp. 53–56. DOI: 10.12737/article_5a2fb89e6134d2.05260495.
  12. Andronov I.N., Kucheryavyj V.I., Savich V.L., Borejko D.A. Coercytimetric analysis of the stress state of technological gas pipelines of a compressor shop on the example of a gas air cooling apparatus. Inzhener-neftyanik, 2019, No. 1, pp. 38–45 (In Russian).
  13. Gorkunov E.S., Zadvorkin S.M., Mushnikov A.N., Smirnov S.V., Yakushenko E.I. Effect of mechanical stresses on the magnetic characteristics of pipe steel. Journal of Applied Mechanics and Technical Physics, 2014, vol. 55 (3), pp. 530–538. DOI: 10.1134/S002189441403016X.
  14. Pearson J., Squire P.T., Maylin M.G., Gore J.G. Biaxial stress effects on the magnetic properties of pure iron. IEEE Transactions on magnetics, 2000, vol. 36, No. 5, pp. 3251–3253. DOI: 10.1109/20.908758.
  15. Pearson J., Squire P.T., Maylin M.G., Gore J.G. Apparatus for magnetic measurements under biaxial stress. IEEE Transactions on magnetics, 2000, vol. 36, No. 5, pp. 3599–3601. DOI: 10.1109/20.908913.
  16. Kai Y., Tsuchida Y., Todaka T., Enokizono M. Development of system for vector magnetic property measurement under stress. Journal of Electrical Engineering, 2010, vol. 61, No. 7/s, pp. 77–80.
  17. Kai Y., Tsuchida Y., Todaka T., Enokizono M. Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a nonoriented electrical steel sheet under alternating magnetic flux conditions. IEEE Transactions on magnetics, 2014, vol. 50, No. 4, 6100204. DOI: 10.1109/TMAG.2013.2287875.
  18. Kai Y., Enokizono M. Effect of arbitrary shear stress on vector magnetic properties of non-oriented electrical steel sheets. IEEE Transactions on magnetics, 2017, vol. 53, No. 11, 2002304. DOI: 10.1109/TMAG.2017.2703592.
  19. Aydin U., Rasilo P., Singh D., Lehikoinen A., Belahcen A., Arkkio A. Coupled magneto-mechanical analysis of iron sheets under biaxial stress. IEEE Transactions on magnetics, 2016, vol. 52, No. 3, 2000804. DOI: 10.1109/TMAG.2015.2496207.
  20. Aydin U., Rasilo P., Martin F., Belahcen A., Daniel L., Haavisto A., Arkkio A. Effect of multi-axial stress on iron losses of electrical steel sheets. Journal of Magnetism and Magnetic Materials, 2019, vol. 469, pp. 19–27. DOI: 10.1016/j.jmmm.2018.08.003.
  21. Aydin U., Martin F., Rasilo P., Belahcen A., Haavisto A., Singh D., Daniel L., Arkkio A. Rotational single sheet tester for multiaxial magneto-mechanical effects in steel sheets. IEEE Transactions on magnetics, 2019, vol. 55, No. 3, 2001810. DOI: 10.1109/TMAG.2018.2889238.
  22. Aydin U., Rasilo P., Martin F., Belahcen A., Daniel L., Arkkio A. Modeling of multi-axial stress dependent iron losses in electrical steel sheets. Journal of Magnetism and Magnetic Materials, 2020, vol. 504, 166612. DOI: 10.1016/j.jmmm.2018.08.003.
  23. Biaxial and triaxial testing machines. ZwickRoel. Available at: https://www.zwickroell.com/products/static-materials-testing-machines/biaxial-and-triaxial-testing-machines.
  24. Biaxial testing machines. ADMET. Available at: https://www.admet.com/products/biaxial-testing-machines.
  25. Gupte A.A. Optimization of Cruciform Biaxial Composite Specimen. In: Master on Science Thesis, South Dakota State University, 2003.
  26. Escárpita D.A.A., Cárdenas D., Elizalde H., Ramirez R., Probst O. Biaxial tensile strength characterization of textile composite materials. In: Composites and Their Properties, ed. by N. Hu, London, United Kingdom: IntechOpen, 2012.
  27. Zhao K., Chen L., Xiao R., Ding Z., Zhou L. Design of a biaxial ten10.1007/s10853-019-03358-2sile testing device and cruciform specimens for large plastic deformation in the central zone. Journal of Materials Science, 2019, vol. 54, pp. 7231–7245. DOI: 10.1007/s10853-019-03358-2.
  28. G. Kirsch. Die theorie der elastizitat und die bedurfnisse der festigkeislehre. Zantralblatt Verlin Deutscher Ingenieure, 1898, vol. 42, pp. 797–807.
  29. Gorkunov E.S., Mushnikov A.N. Magnetic methods of evaluating elastic stresses in ferromagnetic steels (review). Kontrol’. Diagnostika (“Testing. Diagnostics”), 2020, vol. 23, No. 12, pp. 4–23. (In Russian).


Article reference

Experimental Facility for Studying the Physical Properties of Materials in a Plane Stress State / A. N. Mushnikov, S. M. Zadvorkin, E. N. Perunov, S. V. Vyskrebencev, R. F. Izmajlov, D. I. Vichuzhanin, N. N. Soboleva, A. S. Igumnov // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 4. - P. 50-60. -
DOI: 10.17804/2410-9908.2022.4.050-060. -
URL: http://eng.dream-journal.org/issues/2022-4/2022-4_365.html
(accessed: 07/24/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru