Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2022 Issue 1

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






S. V. Gladkovsky, I. S. Kamantsev, V. E. Veselova, Yu. V. Khudorozhkova


DOI: 10.17804/2410-9908.2022.1.025-037

X-ray diffraction analysis, EBSD technique, and transmission electron microscopy are used to reveal the features of phase and microstructural transformations developing in plastic strain and fracture zones of the 05G20S2 metastable steel (Fe-20Mn-2Si). The dependence of the phase composition of the steel on the fatigue fracture surface on the value range of the stress intensity coefficient at the fatigue crack tip is determined.

Acknowledgments: The work was performed according to the state assignment for the IES UB RAS, theme No. AAAA-A18-118020790148-1. We express our gratitude to M. S. Khadyev, Ph.D., A. S. Patselov, and S. N. Sergeev for their assistance in conducting microstructural studies and X-ray diffraction analysis. Our thanks are also due to Prof. Yu. N. Simonov head of the Department of MHT PNRPU, for the opportunity to use the licensed SIAMS-700 program for quantitative metallographic analysis.

Keywords: microstructure, austenite, phase composition, strain-induces martensite, fatigue crack, plastic zone, cyclic fracture toughness, fracture microstructure


  1. Filippov M.A., Litvinov V.S., Nemirovskiy Yu.R. Stali s metastabilnym austenitom [Steels with metastable austenite]. Moscow, Metallurgiya Publ., 1988. (In Russian).
  2. Klevtsova N.A., Frolova O.A., Klevtsov G.V. Razrushenie austenitnykh staley i martensitnye prevrashcheniya v plasticheskikh zonakh [Fracture of Austenitic Steels and Martensitic Transformations in Plastic Zones]. Moscow, Izd-vo Akademii Estestvoznaniya Publ., 2005. (In Russian).
  3. Ju Y.-B., Koyama M., Sawaguchi T., Tsuzaki K., Noguchi H. In situ microscopic observations of low-cycle fatigue-crackpropagation in high-Mn austenitic alloys with deformation-induced ε-martensitic transformation. Acta Materialia, 2016, No. 112, pp. 326–336. DOI: 10.1016/j.actamat.2016.04.042.
  4. Hornbogen E. Martensitic transformation at a propagating crack. Acta Metallurgica, 1978, No. 26 (1), pp. 147–152. DOI: 10.1016/0001-6160(78)90211-0.
  5. Bogachev I.N., Egolaev V.F. Struktura i svoystva zhelezomargantsevykh splavov [Structure and properties of Fe-Mn alloys]. Moscow, Metallurgiya Publ., 1973. (In Russian).
  6. Vintaykin E.Z. Martensite transformatons. Itogi Nauki i Tekhniki: Metallovedenie i termicheskaya obrabotka. T. 17 [Results of Science and Technology, Ser. Metal Science and Heat Treatment. Vol. 17]. Moscow, VINITI AN SSSR Publ., 1983, pp. 3–63. (In Russian).
  7. Schumann H. Zeitschrift für Metallkunde, 1965, Bd. 56, Num. 3, s. 322–340.
  8. Lysak L.I., Nikolin B.I. Fizicheskie osnovy termicheskoy obrabotki stali [Physical Basics of Steel Heat Treatment]. Kiev, Tekhnika Publ., 1975, 304 p. (In Russian).
  9. Sokolov O.G., Katsov K.B. Zhelezomargantsevye splavy [Ferromanganese alloys]. Kiev, Nauk. Dumka Publ., 1982, 216 p. (In Russian).
  10. Volynova T.F. Vysokomargantsevye stali i splavy [High Manganese Steels and Alloys]. Moscow, Metallurgiya Publ., 1988, 343 p. (In Russian).
  11. Georgieva I.Y., Gulyaev A.A., Kondrateva E.Y. Deformation twinning and mechanical properties of austenitic manganese steels. Metal Science and Heat Treatment, 1976, vol. 18 (7–8), pp. 723–726. DOI: 10.1007/BF00705115.
  12. Zolotorevskij V.S. Mekhanicheskie svoystva metallov [Mechanical properties of metals]. Moscow, Metallurgiya Publ., 1983, 352 p. (In Russian).
  13. Panin V.E., Likhachev V.A., Grinyaev Yu.V. Strukturnye urovni deformatsii tverdykh tel [Structural levels of deformation of solids]. Novosibirsk, Nauka Publ., 1985, 229 p. (In Russian).
  14. Malinov L.S., Harlanova E.Ya. Influence of alloying and preliminary deformation on the phase composition and mechanical properties of Fe-Mn alloys. Izv. AN SSSR. Metally. 1981, No. 6, pp. 141–147. (In Russian).
  15. Ivanova B.C., Bot vina L.F., Saprykin Yu.V., Kozlov P.M. Structural-changes under fracture surface of Kh18N9T steel specimens. Fizika Metallov i Metallovedenie, 1975, vol. 39 (6), pp. 1251—1256. (In Russian).
  16. Goritskiy V.M., Terent'ev V.F. Struktura i ustalostnoe razrushenie metallov [Structure and Disastrous Fatigue Failure of Metals]. Moscow, Metallurgiya Publ., 1980, 208 p. (In Russian).
  17. Botvina L.R. Kinetika razrusheniya konstruktsionnykh materialov [Fracture Kinetics of Construction Materials]. Moscow, Nauka Publ., 1989, 230 p. (In Russian).
  18. Martin S., Wolf S., Martin U., Krüger L. Influence of temperature on phase transformation and deformation mechanisms of cast CrMnNi-TRIP/TWIP steel. Solid State Phenomena, 2011, vols 172–174, pp. 172–177. DOI: 10.4028/www.scientific.net/SSP.172-174.172. Available at: https://www.scientific.net/SSP.172-174.172
  19. Martin S., Ullrich C., Rafaja D. Deformation of austenitic CrMnNi TRIP/TWIP steels: Nature and role of the Ɛ-martensite. Materials Today: Proceedings, 2015, vol. 2, suppl. 3, pp. S643–S646. DOI: 10.1016/j.matpr.2015.07.366.
  20. Weidner А., Martin S., Klemm V., Martin U., Biermann H. Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scripta Materialia, 2011, pp. 513–516. DOI: 10.1016/j.scriptamat.2010.11.028.
  21. Weidner A., Biermann H. Microstructure evolution and phase transformation in a novel highalloyed TRIP steel observed during in-situ tensile and cyclic Deformation. Key Engineering Materials, 2011, No. 465, pp. 350–353. DOI: 10.4028/www.scientific.net/KEM.465.350.
  22. Vinogradova A., Lazareva A., Linderova M., Weidnerb A., Biermannb H. Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: Influence of austenite stability on deformation mechanisms. Acta Materialia, 2013, No. 61 (7), pp. 2434–2449. DOI: 10.1016/j.actamat.2013.01.016.
  23. Volkova E.G., Sagaradze V.V., Malygina I.Yu. Special Features of the Granular Structure of the Surface Zone in Pipe Steel 12kh18n12t. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 6, pp. 63–67. DOI: 10.17804/2410-9908.2015.6.063-067. Available at: https://dream-journal.org/DREAM_Issue_6_2015_Volkova_E.G._et_al._063_067.pdf
  24. Pestrikov V.M. and Morozov E.M. Mekhanika razrusheniya. Kurs lektsii [Fracture Mechanics. Course of Lectures]. St. Petersburg, Izd-vo Professiya Publ., 2012, 552 p.


Article reference

Martensitic Transformations in Plastic and Fracture Zones of the 05g20s2 Metastable Steel During Cyclic Tests / S. V. Gladkovsky, I. S. Kamantsev, V. E. Veselova, Yu. V. Khudorozhkova // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 1. - P. 25-37. -
DOI: 10.17804/2410-9908.2022.1.025-037. -
URL: http://eng.dream-journal.org/issues/2022-1/2022-1_354.html
(accessed: 06/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru