Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2021 Issue 3

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






N. B. Pugacheva , B. N. Guzanov


DOI: 10.17804/2410-9908.2021.3.017-030

In recent years, chromium-nickel-manganese corrosion-resistant steels have been widely used in construction for the manufacture of stair railings and fences, elevators, and heat exchangers used for heat recovery in office premises and in production, including in metallurgical workshops. The purpose of this study is to determine the changes in the chemical and phase compositions of the 12Cr15Mn9NiCu corrosion-resistant steel (Russian analogue of the AISI 201 steel) after commercial operation in structural components of the heat exchanger of a metallurgical workshop. It was found that, during operation, all the studied fragments of the 12Cr15Mn2NiCu steel heat exchanger underwent intense oxidation with the formation of chromium and manganese oxides both on the surface and along the boundaries of the austenite grain. Diffusive penetration of sulfur into the steel with the formation of MnS particles, as well as carbonization of the surface layers, was recorded. As a result, the content of chromium and manganese in the steel significantly decreased, the amount of carbon increased, and the structure changed from austenitic to martensitic with a hardness of 532 HV 5 (48 HRC). Several investigated fragments retained austenite with oxidized grain boundaries. The austenite grain size ranged from 0.031 mm to 0.088 mm, with hardness ranging from 156 to 212 HV 5. It is shown that the use of the 12Cr15Mn9NiCu corrosion-resistant chromium-nickel-manganese steel intended for the manufacture of heat exchangers for metallurgical production is extremely inappropriate.

Acknowledgments: The research used the facilities of the Plastometriya shared access center at the IES UB RAS. It was performed according to the state assignment on theme No. AAAA-A18-118020790145-0. We appreciate the effort of E. B. Trushina, who assisted us in the research.

Keywords: corrosion-resistant steel, oxides, sulfides, microstructure, austenite, martensite, hardness


  1. Ulyanin E.A. Korrozionnostoykie stali i splavi: Spravochnik [Corrosion-resistant Steels and Alloys: A Handbook]. Moscow: Metallurgiya Publ., 1991, 255 p. ISBN: 5-229-00808-3. (In Russian).
  2. Tufanov D.G. Korrozionnaya stoikost nerzhaveyushchikh stalei, splavov i chistykh metallov: Spravochnik [Corrosion Resistance of Stainless Steels, Alloys, and Pure Metals: A Handbook]. Moscow, Metallurgiya Publ., 1990, 320 p. ISBN: 5-229-00531-9. (In Russian).
  3. Babakov A.A., Pridantsev M.V. Korrozionnostoykie stali i splavy [Corrosion-resistant steels and alloys]. Moscow, Metallurgiya Publ., 1971, 318 p. (In Russian).
  4. Shlyamnev A.P., Svistunova T.V., Lapina O.B., Sorokona N.A., Matorin V.I., Stolyarov V.I., Bogolyubskiy S.D., Kozlova N.N., Enderal A.F. Korrozionnostoykie, zharostoykie i vysokoprochnye stali i splavy [Corrosion-Resistant, Heat-Resistant and High-Strength Steels and Alloys: A Reference Book]. Moscow, Intermet Engineering Publ., 2000, 232 p. ISBN: 5-89594-028-5. (In Russian).
  5. Ki Leuk Lai J., Kin Ho Lo, Chan Hung Shek, eds. Stainless Steels: An Introduction and their Recent Developmentsm, Bentham Science Publishers, 2012, 168 p. DOI: 10.2174/97816080530561120101.
  6. Brooks J.A. Weldability of high N, high Mn austenitic stainless steel. Welding Research Supplement, 1975, no. 6, pp. 189–195.
  7. Uggowitzer P.J., Magdowski R., Speidel M.O. Nickel Free High Nitrogen Austenitic Steels. ISIJ International, 1996, vol. 36, no. 7, pp. 901–908. DOI: 10.2355/isijinternational.36.901.
  8. Goldshtein M.I., Grachev S.V., Veksler Yu.G. Spetsialnye stali [Special steels]. Moscow, MISIS Publ., 1999, 408 p. ISBN: 5-87623-032-4. (In Russian).
  9. Robino C.V., Michael J.R., Maguire M.C. The solidification and weld metallurgy of galling resistant stainless steels. Welding Journal, 1998, vol. 77, no. 11, pp. 446–457.
  10. Tehovnik F., Vodopivec F., Kosec L., Godec M. Hot ductility of austenite stainless steel with a solidification structure. Materiali in Tehnologije, 2006, vol. 40, pp. 129–137.
  11. Sung J.H., Joo D.W., Kim I.S., Kang C.Y., Sung J.H. Phase changes of Fe-20Mn-13Cr-3Co/1.2Ti alloys during solution nitriding. Met. Mater. Int., 2005, vol. 11, pp. 157–163. DOI: 10.1007/BF03027460.
  12. Williamson D.L., Davis J.A., Wilbur P.J. Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing. Surf. Coat. Technol., 1998, vol. 103–104, pp. 178–184. DOI: 10.1016/s0257-8972(98)00389-2.
  13. Samandi M., Shedden B.A., Smith D.I., Collins G.A., Hutching R., Tendys J. Microstructure, corrosion and tribological behaviour of plasma immersion ion-implanted austenitic stainless steel. Surf. Coat. Technol., 1993, vol. 59, pp. 261–266. DOI: 10.1016/0257-8972(93)90094-5.
  14. Mändl S., Manova D., Neumann H., Pham M.T., Richter E., Rauschenbach B. Correlation between PIII nitriding parameters and corrosion behavior of austenitic stainless steels. Surface & Coatings Technology, 2005, vol. 200, pp. 104–108. DOI:10.1016/J.SURFCOAT.2005.02.084.
  15. Hansen M., Anderko K. Constitution of binary alloys, McGraw Hill Book Co., Inc., New York/Toronto, 1958, pp. 670–675.
  16. A.G. Rakhstadt and V.V. Bromtrem, eds. Spravochnik metallista [Metalworker’s Guide, in 5 volumes. Vol. 2]. Moscow, 1976, 720 p. (In Russian).
  17. Materialy v mashinostroenii. Vybor i primenenie, ed. I.V. Kudryavtseva [Materials in mechanical engineering. Selection and application: reference book in five volumes. Vol. 3. Special steels and alloys, ed. F.F. Himushina]. Moscow, Mashinostroenie Publ., 1968, 217 p. (In Russian).
  18. Stali i splavy. Marochnik: sprav. izd. [Steels and Alloys: Grade Guide, eds. V.G. Sorokin, M.A. Gervasiev]. M., Intermet Inzhiniring Publ., 2003, 608 p. (In Russian).
  19. Sung J.H., Joo D.W., Kim I.S., Kang Chang Yong & Sung Jang Hyun. Phase changes of Fe−20Mn−13Cr−3Co/1.2Ti alloys during solution nitriding. Met. Mater. Int., 2005, vol. 11, pp. 157–163. DOI: 10.1007/BF03027460.
  20. Klyuch staley. Izgotovlenie i postavka: spravochnik [Key to Steels. Production and Delivery: reference book, trans. Germ.]. M., Intermet Inzhiniring Publ., 2001, 734 p. (In Russian).
  21. Ning Liu, Zhonggang Deng, Menggen Huang. Effect of heat treatment on microstructure and mechanical properties of martensitic-ferritic stainless steel containing 17%Cr and 2%Ni. Materials Science and Technology, 1991, vol. 7, pp. 1057–1062. DOI: 10.1179/mst.1991.7.11.1057.
  22. Metallographiya zheleza [Metallography of Iron, ed. F.N. Tavadze, Engl. transl. by Z. Sh. Kherodinashvili, L.P. Danilenko. Vol. 3. Crystallization and deformation of steels]. Moscow, Metallurgiya Publ., 1972. (In Russian).
  23. Engel’ L. and Klingele G. Rastrovaya elektronnaya microskopiya. Razrushenie [Scanning Electron Microscopy. Fracture: A Handbook, Germ. transl.]. Metallurgiya, Moscow, 1986. (In Russian).


Article reference

Pugacheva N. B., Guzanov B. N. Studying the Chemical and Phase Compositions of a Chromium-Nickel-Manganese Steel after Operation at Elevated Temperatures in Corrosive Environments // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 3. - P. 17-30. -
DOI: 10.17804/2410-9908.2021.3.017-030. -
URL: http://eng.dream-journal.org/issues/2021-3/2021-3_326.html
(accessed: 06/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru