Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2021 Issue 3

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






N. V. Burmasheva, E. Yu. Prosviryakov


DOI: 10.17804/2410-9908.2021.3.055-070

The article presents a new exact solution for stratified steady-state shear diffusion flows of a viscous fluid in an infinite horizontal layer with impenetrable boundaries. The announced exact solution belongs to the Ostroumov–Birikh family. Two components of the velocity vector depend on the vertical (transverse) coordinate. The concentration field and the pressure field are described by linear forms relative to horizontal (longitudinal) coordinates, with coefficients depending on the third coordinate. The components of the velocity field and the shear stress field are analyzed in detail, and the behavior of the specific kinetic energy is studied. It is shown that this exact solution is capable of describing the stratification of the shear stress field and the nonmonotonic behavior of flow velocity. The relation of flow velocities and shear stresses to the distribution of specific kinetic energy is revealed.

Keywords: concentration convection, Navier–Stokes equation, exact solution, shear flow, stratification


  1. Zuev A.L., Kostarev K.G. Experimental study of the features of concentration-capillary convection. Vestnik Permskogo nauchnogo tsentra UrO RAN, 2009, no. 4, pp. 4–15. (In Russian).
  2. Birikh R.V., Mazunina E.S., Mizev A.I., Rudakov R.N. Solutal convection induced by submerged source of surface-active substance. Konvektivnye Techeniya, 2009, no. 4, pp. 063–084. (In Russian).
  3. Evstratova K.I., Kupina N.A., Malakhova E.E. Fizicheskaya i kolloidnaya khimiya [Physical and colloidal chemistry]. Moscow, Vysshaya shkola, 1990, 487 p. (In Russian).
  4. Petrov N.Kh. A fluorescence spectroscopy study of preferential solvation in binary solvents. High Energy Chemistry, 2006, vol. 40, no. 1, pp. 22–34. DOI: 10.1134/S001814390601005X.
  5. Gurevich A.E., Kapchenko L.N., Kruglikov N.M. Teoreticheskiye osnovy neftyanoy gidrogeologii [Theoretical foundations of petroleum hydrogeology]. Leningrad, Nedra Publ., 1972, 272 p. (In Russian).
  6. Petrov T.G., Treyvus E.B., Kasatkin A.P. Vyrashchivaniye kristallov iz rastvorov [Growing crystals from solutions]. Leningrad, Nedra Publ., 1983, 200 p. (In Russian).
  7. Kartsev A.A. Gidrogeologiya neftyanykh i gazovykh mestorozhdeniy [Hydrogeology of oil and gas fields, 2nd edition, rev. and add.]. Moscow, Nedra Publ., 1972, 280 p. (In Russian).
  8. Aristov S.N., Prosviryakov E.Yu., Spevak L.F. Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid. Vychislitel’naya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2015, vol. 8, no. 4, pp. 445–456. DOI: 10.7242/1999- 6691/2015. (In Russian).
  9. Beschastnov M.V., Sokolov V.M., Katz M.I. Avarii v khimicheskikh proizvodstvakh i mery ikh preduprezhdeniya [Accidents in chemical industries and measures for their prevention]. Moscow, Khimiya Publ., 1976, 368 p. (In Russian).
  10. Pryanikov V.I. Tekhnika bezopasnosti v khimicheskoy promyshlennosti [Safety in the chemical industry]. Moscow, Khimiya Publ., 1989, 288 p. (In Russian).
  11. Surguchev M.L., Zheltkov Yu.V., Simkin E.M. Fiziko-khimicheskiye mikroprotsessy v neftegazonosnykh plastakh [Physicochemical microprocesses in the oil and gas-bearing formations]. Moscow, Nedra Publ., 1984, 215 p. (In Russian).
  12. Walmsley H.L. The calculation of the electrostatic potentials that occur when tanks are filled with charged liquids. J. Electrostatics, 1991, vol. 26, pp. 201–226. DOI: 10.1016/0304-3886(91)90016-9.
  13. Walmsley H.L. Threshold potentials and discharge charge transfers for the evaluation of electrostatic hazards in road -tanker loading. J. Electrostatics, 1991, vol. 26, pp. 157–174. DOI: 10.1016/0304-3886(91)90013-6.
  14. Walmsley H.L., Mills J.S. Electrostatic ignition hazards in road tanker loading: Part 1. J. Electrostatics, 1992, vol. 28, pp. 61–88. DOI: 10.1016/0304-3886(92)90028-R.
  15. Walmsley H.L., Gregory К.E. Electrostatic ignition hazards in road tanker loading: Part 2. J. Electrostatics, 1992, vol. 28, pp. 99–124. DOI: 10.1016/0304-3886(92)90065-2.
  16. Walmsley H.L., Gregory К.E. Electrostatic ignition hazards in road tanker loading: Part 3. J. Electrostatics, 1992, vol. 28, pp. 125-148. DOI: 10.1016/0304-3886(92)90066-3.
  17. Fung P., Chen H., Touchard G.G., Radke C.J. A nonlinear corrosion double layer model for laminar flow electrification of hydrocarbon liquids in long metal pipes. J. Electrostatics, 1997, vol. 40, pp. 45–54. DOI: 10.1016/S0304-3886(97)00013-2.
  18. Gershuni G.Z., Zhukhovitskii E.M. Convective stability of incompressible fluids. Israel Program for Scientific Translations, Jerusalem, Keter Publishing House, 1976, 330 p.
  19. Ryzhkov I.I., Stepanova I.V. Group properties and exact solutions of equations for vibrational convection of a binary mixture. Journal of Applied Mechanics and Technical Physics, 2011, vol. 52, no. 4, pp. 560–570. DOI: 10.1134/S0021894411040080.
  20. Burmasheva N.V., Prosviryakov E.Yu. Exact solution for stable convective concentration flows of a Couette type. Vychislitel’naya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2020, vol. 13, no. 3, pp. 337–349. DOI: 10.7242/1999-6691/2020.13.3.27. (In Russian).
  21. Lin C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Rational Mech. Anal., 1957, vol. 1, pp. 391–395. DOI: 10.1007/BF00298016.
  22. Sidorov A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phys., 1989, vol. 30, no. 2, p. 197–203. DOI: 10.1007/BF00852164.
  23. Aristov S.N., Prosviryakov E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor. Found. Chem. Eng., 2016, vol. 50, pp. 286–293. DOI: 10.1134/S0040579516030027.
  24. Burmasheva N.V., Prosviryakov E.Yu. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. Journal of King Saud University-Science, 2020, vol. 32, iss. 8, pp. 3364–3371. DOI: 10.1016/j.jksus.2020.09.023.
  25. Knyazev D.V. Two-dimensional flows of a viscous binary fluid between moving solid boundaries. Journal of Applied Mechanics and Technical Physics, 2011, vol. 52, no. 2, pp. 212–217. DOI: 10.1134/S0021894411020088.
  26. Ostroumov G.A. Free convection under the condition of the internal problem. Washington, NACA Technical Memorandum 1407, National Advisory Committee for Aeronautics, 1958.
  27. Birikh R.V. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys., 1966, no. 7, p. 43–44.
  28. Su T.C. Obtaining the exact solutions of the Navie-Stokes equations. International Journal of Non-linear Mechanics, 1985, vol. 20, no. 1, pp. 9–19.
  29. Petrov A.G. Exact solution of the Navier-Stokes equations in a fluid layer between the moving parallel plates. Journal of Applied Mechanics and Technical Physics, 2012, vol. 53, no, 5, pp. 642–646. DOI: 10.1134/S0021894412050021.
  30. Pukhnachev V.V. Symmetries in the Navier-Stokes equations. Uspekhi matematiki, 2006, vol. 4, no. 1, pp. 6–76. (In Russian).
  31. Riabouchinsky D. Quelques considerations sur les mouvements plans rotationnels d’ un liquid. C. R. Hebdomadaires Acad. Sci., 1924, vol. 179, pp. 1133–1136.
  32. Pukhnachev V.V. Group properties of the Navier-Stokes equations in the plane case. Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1960, no. 1, pp. 83–90. (In Russian).
  33. Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, no. 5, pp. 642–662. DOI: 10.1134/S0040579509050066.
  34. Prosviryakov E.Yu. Exact solutions of three-dimensional potential and vortical Couette flows of a viscous incompressible fluid. Vestnik NIYaU MIFI, 2015, vol. 4, no. 6, pp. 501–506. DOI: 10.1134/S2304487X15060127. (In Russian).
  35. Polyanin A.D., Zhurov A.I. Integration of linear and some model non-linear equations of motion of incompressible fluids. International Journal of Non-Linear Mechanics, 2013, vol. 49, pp. 77–83. DOI: 10.1016/j.ijnonlinmec.2012.08.004.
  36. Ludlow D.K., Clarkson P.A., Bassom A. Nonclassical symmetry reductions of the three-dimensional incompressible Navier-Stokes equations. Journal of Physics A General Physics, 1999, vol. 31, no. 39, 7965. DOI: 10.1088/0305-4470/31/39/012.
  37. Aristov S.N., Polyanin A.D. Exact solutions of unsteady three-dimensional Navier-Stokes equations. Doklady Physics, 2009, vol. 54, no. 7, pp. 316–321. DOI: 10.1134/S1028335809070039.
  38. Pukhnachev V.V. Symmetries in the Navier-Stokes equations. Uspekhi Mekhaniki, 2006, no. 6, pp. 3–76. (In Russian).
  39. Kuznetsova Ju.L., Skul’skiy O.I., Pyshnograi G.V. Presure driven flow of a nonlinear viscoelastic fluid in a plane channel. Vychislitel’naya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2010, vol. 3, no. 2, pp. 55–69. (In Russian).
  40. Aristov S.N., Skulsky O.I. Exact solution of the problem of flow of a six-constant model of Jeffreys fluid in a plane channel. Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2002, vol. 43, no. 6, pp. 39–45. (In Russian).
  41. Knyazev D.V., Kolpakov I.Yu. The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius. Nelineynaya Dinamika [Russian Journal of Nonlinear Dynamics], 2015, vol. 11, no. 1, pp. 89–97.
  42. Goncharova O.N., Rezanova E.V., Lyulin Y.V., Kabov O.A. Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation. High Temperature, 2017, vol. 55, no. 6, pp. 887–897. DOI: 10.1134/S0018151X17060074.
  43. Burmasheva N.V., Prosviryakov E.Yu. A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation. Vestnik SamGTU. Seriya fiziko-matematicheskie nauki [Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences], 2017, vol. 21, no. 1, pp. 180–196. DOI: 10.14498/vsgtu1527. (In Russian).
  44. Burmasheva N.V., Prosviryakov E.Yu. Temperature field investigation in layered flows of a vertically swirling viscous incompressible fluid under two thermocapillar forces at a free boundary. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 1, pp. 6–42. DOI: 10.17804/2410-9908.2019.1.006-042.
  45. Burmasheva N.V., Larina E.A., Prosviryakov E.Yu. Unidirectional convective flows of a viscous incompressible fluid with slippage in a closed layer. AIP Conference Proceedings, 2019, vol. 2176, 030023. DOI: 10.1063/1.5135147.
  46. Burmasheva N.V., Prosviryakov E.Yu., Thermocapillary convection of a vertical swirling liquid. Theoretical Foundations of Chemical Engineering, 2020, vol. 54, no. 1, pp. 230–239. DOI: 10.1134/S0040579519060034.
  47. Burmasheva N.V., Prosviryakov E.Yu. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 2, pp. 79–87. DOI: 10.21538/0134-4889-2020-26-2-79-87. (In Russian).
  48. Burmasheva N.V., Larina E.A., Prosviryakov E.Yu. Unidirectional convective flow of viscous incompressible fluid in a closed horizontal layer with the perfect slip condition. AIP Conference Proceedings, 2020, vol. 2315, 020010. DOI: 10.1063/5.0036714. (In Russian).
  49. Burmasheva, N.V., Privalova, V.V., Prosviryakov, E.Y. Layered Marangoni convection with the Navier slip condition. Sādhanā, 2021, vol. 46, 55. DOI: 10.1007/s12046-021-01585-5.
  50. Burmasheva N.V., Prosviryakov E.Yu. Analysis of non-one-dimensional shear concentration convective flows of a viscous incompressible fluid in a plane horizontal layer with motionless boundaries. AIP Conference Proceedings, 2020, vol. 2315, 020007. DOI: 10.1063/5.0036710.
  51. Sedov L.I. Continuum Mechanics, vol. 1. Moscow, Nauka Publ., 1970, 492 p. (In Russian).
  52. Truesdell C. Pervonachalnyi kurs ratsionalnoy mekhaniki sploshnykh sred [A First Course in Rational Continuum Mechanics, Engl. transl.]. Moscow, Mir Publ., 1975. (In Russian).
  53. Vallander S.V. Lektsii po gidroaeromekhanike [Lectures on hydroaeromechanics]. Leningrad, Izdatel’stvo Leningradskogo universiteta Publ., 1978. (In Russian).
  54. Pokrovsky V.N. Statisticheskaya mekhanika razbavlennykh suspenziy [Statistical mechanics of dilute suspensions]. Moscow, Nauka Publ., 1978. (In Russian).


Article reference

Burmasheva N. V., Prosviryakov E. Yu. Analysis of Specific Kinetic Energy for the Birikh–Ostroumov Shear Diffusion Flow // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 3. - P. 55-70. -
DOI: 10.17804/2410-9908.2021.3.055-070. -
URL: http://eng.dream-journal.org/issues/2021-3/2021-3_319.html
(accessed: 06/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru