Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2021 Issue 2

All Issues
 
2024 Issue 6
(in progress)
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

E. Yu. Prosviryakov

GRAVITATIONAL PRINCIPLE OF MINIMUM PRESSURE FOR INCOMPRESSIBLE FLOWS

DOI: 10.17804/2410-9908.2021.2.022-029

We consider the flows of ideal (Euler equations) and Newtonian viscous (Navier–Stokes equations) incompressible fluids in the gravitational field of mass forces. In this case, the gravitational field created by the liquid itself (self-gravity) is also taken into account. It is shown that some well-known principles of maximum pressure, according to which either the pressure is constant in the flow region, or the minimum pressure is reached at the boundary of this region if the forces of self-gravity are taken into account, exclude the case of constant pressure. It is also demonstrated that self-gravity makes it impossible for waves and solitons to pass with pressure minima to the surface of a body flown around by a viscous fluid.

Keywords: principle of minimum pressure, vortex flows, ideal incompressible fluid, viscous incompressible fluid

References:

  1. Landau L.D., Lifshitz E.M. Fluid Mechanics (Volume 6 of A Course of Theoretical Physics) [Original Russian text published in Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika. Moskva, FIZMATLIT Publ., 1986, 736 p.], Oxford, Pergamon Press, 1987, 536 p.
  2. Privalova V.V., Prosviryakov E.Yu. Vortex flows of a viscous incompressible fluid at constant vertical velocity under perfect slip conditions. Diagnostics, Resource and Mechanics of materials and structures, 2019, iss. 2, pp. 57–70. DOI: 10.17804/2410-9908.2019.2.057-070. Available at: https://dream-journal.org/DREAM_Issue_2_2019_Privalova_V.V._et_al._057_070.pdf
  3. Prosviryakov E.Yu. Dynamic equilibria of a nonisothermal fluid. Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 4, pp. 735–749. DOI: 10.14498/vsgtu1651. (In Russian).
  4. Prosviryakov E.Y. Exact Solutions for three-dimensional potential and vorticity Couette flows of an incompressible viscous fluid. Vestnik Natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI", 2015, vol. 4, no. 6, pp. 501–506. DOI: 10.1134/S2304487X15060127. (In Russian).
  5. Burmasheva N.V., Prosviryakov E.Y. Thermocapillary Convection of a Vertical Swirling Liquid. Theoretical Foundations of Chemical Engineering, 2020, vol. 54, pp. 230–239. DOI: 10.1134/S0040579519060034.
  6. Prosviryakov E.Y. New class of exact solutions of Navier–Stokes equations with exponen_tial dependence of velocity on two spatial coordinates. Theoretical Foundations of Chemical Engineering, 2019, vol. 53, No. 1, pp. 107–114. DOI: 10.1134/S0040579518060088.
  7. Aristov S.N., Knyazev D.V., Polyanin A.D. Exact solutions of the Navier-Stokes Equations with the linear dependence of velocity components on two space variables. Theoretical Foundations of Chemical Engineering, 2009, vol. 43, no. 5, pp. 642–662. DOI: 10.1134/S0040579509050066.
  8. Knyazev D.V. Solving the motion equations of a viscous fluid with a nonlinear dependence between a velocity vector and some spatial variables. Journal of Applied Mechanics and Technical Physics, 2018, vol. 59, pp. 928–933. DOI: 10.1134/S0021894418050218.
  9. Hamel G. Ein allgemeiner Satz über den Druck bei der Bewegung volumbeständiger Flüssigkeiten. Monatsh. f. Mathematik und Physik, 1936, vol. 43, pp. 345–363. DOI: 10.1007/BF01707614.
  10. Batchelor G.K. An Introduction to Fluid Dynamics, University Press, Cambridge, 1970. DOI: 10.1017/CBO9780511800955.
  11. Truesdell C. A First Course in Rational Continuum Mechanics, New York, Academic Press, 1977, 295 p.
  12. Serrin J. Mathematical principles of classical fluid mechanics. In: Fluid Dynamics I/Strömungsmechanik I, ed. C. Truesdell, Encyclopedia of Physics/Handbuch der Physik, vol. 3/8/1, Springer, 1959, pp. 125–263.
  13. Sedov L.I. Mechanics of Continuous Media, World Sci., River Edge, NJ, 1997.
  14. Sizykh G. B. A sign of the presence of a deceleration point in a plane irrotational perfect gas flow. Trudy MFTI, 2015, vol. 7 (2), pp. 108–112. (In Russian).
  15. Burmistrov A.N., Kovalev V.P., Sizykh G.B. Maximum Principle for the Solution of an Elliptic Equation with Unbounded Coefficients. In: Trudy MFTI (Proceedings of MIPT), 2014, vol. 6, no. 4, pp. 97–102. (In Russian).
  16. Golubkin V.N., Sizykh G.B. Maximum principle for the Bernoulli function. TsAGI Science Journal, 2015, vol. 46, No. 5, pp. 485–490. DOI: 10.1615/TsAGISciJ.v46.i5.50.
  17. Golubkin V.N., Sizykh G.B. Maximum principles in hydrodynamics. In: Proceedings of XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics, Kazan, August 20–24, 2015. Kazan, Izdatelstvo Kazanskogo (Privolzhskogo) Federalnogo Universiteta Publ., 2015, pp. 989–991. (In Russian).
  18. Besportochnyy A.I., Burmistrov A.N., Sizykh G.B. Version of the Hopf Theorem. Trudy MFTI [Proceedings of MIPT], 2016, vol. 8, no. 1, pp. 115–122. (In Russian).
  19. Golubkin V.N., Kovalev V.P., Sizykh G.B. Maximum principle for pressure in ideal incompressible fluid flows. TsAGI Science Journal, 2016, vol. 47, iss. 6, pp. 599–609. DOI: 10.1615/TsAGISciJ.2017019567.
  20. Sizykh G.B. A velocity minimum in a potential fluid flow. Fluid Dynamics, 2017, vol. 52 (3), pp. 345–350. DOI: 10.1134/S0015462817030024.
  21. Polyachenko V. L., Fridman A. M., Physics of Gravitating Systems I: Equilibrium and Stability, Rus. transl. [Ravnovesie i ustoycivost` gravitiruyushchikh sistem, Moskva, Nauka Publ., 1976], Springer-Verlag Berlin Heidelberg, 1984.
  22. Golubkin V.N., Korolev G.L., Sizykh G.B. Differential properties of pressure in a viscous fluid.  TsAGI Science Journal, 2016, vol. 47, iss. 1, pp. 41–49. DOI: 10.1615/TsAGISciJ.2016017060.


PDF      

Article reference

Prosviryakov E. Yu. Gravitational Principle of Minimum Pressure for Incompressible Flows // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 2. - P. 22-29. -
DOI: 10.17804/2410-9908.2021.2.022-029. -
URL: http://eng.dream-journal.org/issues/2021-2/2021-2_315.html
(accessed: 12/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru