Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2021 Issue 1

All Issues
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

D. I. Kryuchkov, A. G. Zalazinskiy

MODEL REPRESENTATION OF AN AXISYMMETRIC STEEL-ALUMINUM SAMPLE FOR SIMULATION OF A SEPARATION TEST

DOI: 10.17804/2410-9908.2021.1.026-037

The object of research is a bimetallic composite material with a thin intermediate layer of aluminum. The aim of the work is to determine the features of the stress-strain state at the interlayer boundaries of a steel-aluminum composite material with a thin layer using the computational experiment method and to calculate separation resistance using the energy criterion. The stress-strain state along the boundaries of the joint at delamination is determined from the results of modeling the deformation of axisymmetric samples made of a steel-aluminum bimetallic composite material with a thin intermediate layer of aluminum. A series of computational experiments with varying the critical rate of elastic energy release under separation conditions, including under the combined influence of low temperatures and static loads, is implemented. The energy criterion is used to evaluate the stress level that leads to the separation of the bimetallic compound. The dependence of the separation resistance along the ring contour on the critical rate of elastic energy release, which is variable in the range of 0.1 to 0.5 N/mm, is calculated. It is established that, for the studied variants of the computational experiment, a rigid stress state with a predominance of normal tensile stresses is realized at the place of delamination onset.

Acknowledgments: We appreciate the effort of Dr. Berezin, senior professor of the Chair of Information Tech-nologies and Design Automation, UrFU, in making computational experiments.

Keywords: simulation modeling, deformation, axisymmetric sample, steel-aluminum composite material, joint boundary, crack

References:

  1. Krueger R. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 2004, 57 (2), pp. 109–143. DOI: 10.1115/1.1595677.
  2. Valvo P.S. A Physically Consistent Virtual Crack Closure Technique for I/II/III Mixed-mode Fracture Problems. Procedia Materials Science, 2014, vol. 3, pp. 1983–1987. DOI: 10.1016/j.mspro.2014.06.319.
  3. Liu P.F., Hou S.J., Chu J.K., Hu X.Y., Zhou C.L., Liu Y.L., Zheng J.Y., Zhao A., Yan L. Finite element analysis of post buckling and delamination of composite laminates using virtual crack closure technique. Composite Structures, 2011, vol. 93, iss. 5, pp. 1549–1560. DOI: 10.1016/j.compstruct.2010.12.006.
  4. Xie D., Biggers S. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Engineering Fracture Mechanics, 2006, vol. 73, iss. 6, pp. 771–785. DOI: 10.1016/j.engfracmech.2005.07.013.
  5. Perov S.N., Chernyakin S.A. Research the applicability of finite element method for estimation the parameters of fracture mechanics of constructive elements from composites. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 2013, vol. 15, no. 4 (2), pp. 480–483. (In Russian).
  6. Chernyakin S.A., Skvortsov Y.V. Analysis of delamination propagation in composite structures. Vestnik SibGAU, 2014, no. 4 (56), pp. 249–255. (In Russian).
  7. Glushkov S.V., Skvortsov Y.V., Perov S.N., Chernyakin S.A. Finite element analysis of panels with surface cracks. AIP Conference Proceedings, 2017, vol. 1798, 020059. DOI: 10.1063/1.4972651.
  8. Marjanović M., Meschke G., Vuksanović D. A finite element model for propagating delamination in laminated composite plates based on the Virtual Crack Closure method. Composite Structures, 2016, vol. 150, pp. 8–19. DOI: 10.1016/j.compstruct.2016.04.044.
  9. Liu P.F., Islam M.M. A nonlinear cohesive model for mixed-mode delamination of composite laminates. Composite Structures, 2013, vol. 106, pp. 47–56. DOI: 10.1016/j.compstruct.2013.05.049.
  10. Harper P.W., Hallett S.R. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics, 2008, vol. 75, pp. 4774–4792. DOI: 10.1016/j.engfracmech.2008.06.004.
  11. Azimi M., Mirjavadi S.S., Asli S.A., Hamouda A.M.S. Fracture Analysis of a Special Cracked Lap Shear (CLS) Specimen with Utilization of Virtual Crack Closure Technique (VCCT) by Finite Element Methods. Journal of Failure Analysis and Prevention, 2017, vol. 17, iss. 2, pp. 304–314. DOI: 10.1007/s11668-017-0243-1.
  12. Bonhomme J., Argüelles A., Viña J., Viña I. Numerical and experimental validation of computational models for mode I composite fracture failure. Computational Materials Science, 2009, vol. 45, pp. 993–998. DOI: 10.1016/j.commatsci.2009.01.005.
  13. Shokrieh M.M., Rajabpour-Shirazi H., Heidari-Rarani M., Haghpanahi M. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Computational Materials Science, 2012, vol. 65, pp. 66–73. DOI: 10.1016/j.commatsci.2012.06.025.
  14. Martinez X., Rastellini F., Oller S., Floresa F., Oñate E. Computationally optimized formulation for the simulation of composite materials and delamination failures. Composites Part B: Engineering, 2011, vol. 42, iss. 2, pp. 134–144. DOI: 10.1016/j.compositesb.2010.09.013.
  15. Skvortsov Yu.V., Chernyakin S.A., Glushkov S.V., Perov S.N. Simulation of fatigue delamination growth in composite laminates under mode I loading. Applied Mathematical Modelling, 2016, vol. 40, pp. 7216–7224. DOI: 10.1016/j.apm.2016.03.019.
  16. Amiri-Rad A., Mashayekhi M., van der Meer F.P. Cohesive zone and level set method for simulation of high cycle fatigue delamination in composite materials. Composite Structures, 2017, vol. 160, pp. 61–69. DOI: 10.1016/j.compstruct.2016.10.041.
  17. May M., Hallett S.R. An advanced model for initiation and propagation of damage under fatigue loading – part I: Model formulation. Composite Structures, 2011, vol. 93, pp. 2340–2349. DOI: 10.1016/j.compstruct.2011.03.022.
  18. Smirnov S.V., Myasnikova M.V., Igumnov A.S. Determination of the local shear strength of a layered metal composite material with a ductile interlayer after thermocycling. Diagnostics, Resource and Mechanics of materials and structures, 2016, iss. 4, pp. 46–56. DOI: 10.17804/2410-9908.2016.4.046-056.
  19. Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of Fracture Mechanics]. Moscow, Nauka Publ., 1974, 312 p. (In Russian).


PDF      

Article reference

Kryuchkov D. I., Zalazinskiy A. G. Model Representation of An Axisymmetric Steel-Aluminum Sample for Simulation of a Separation Test // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 1. - P. 26-37. -
DOI: 10.17804/2410-9908.2021.1.026-037. -
URL: http://eng.dream-journal.org/issues/2021-1/2021-1_311.html
(accessed: 05/22/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru