D. A. Perminov
A POSITRON ANNIHILATION STUDY OF DEFECT ACCUMULATION IN PHOSPHORUS- AND TITANIUM-ALLOYED AUSTENITIC STAINLESS STEELS UNDER ELECTRON IRRADIATION AT ROOM TEMPERATURE
DOI: 10.17804/2410-9908.2020.6.027-034 The effect of phosphorus and titanium additions on the accumulation of vacancy defects in Cr16Ni15Mo3 austenitic stainless steels under electron irradiation at room temperature is studied by positron annihilation spectroscopy. It is shown that, at this temperature, phosphorus has no noticeable effect on the accumulation of vacancy defects. This is due to the low mobility of vacancies and the low concentration of impurities. Titanium, due to its high concentration, enhances the accumulation of vacancy defects during irradiation, but this effect is weak.
Acknowledgments: The work was performed under the state assignment from the Ministry of Education and Science of Russi, theme Function No. AAAA-A19-119012990095-0, and partially supported by the RFBR, project No. 18-02-00270. Keywords: austenitic stainless steels, phosphorus, titanium, electron irradiation, vacancy defects, positron annihilation References: 1. Zinkle Steven J. and Busby Jeremy T. Structural materials for fission & fusion energy. Materials Today, 2009, vol. 12, no. 11, pp. 12–19. DOI: 10.1016/S1369-7021(09)70294-9.
2. Zinkle S.J., Was G.S. Materials challenges in nuclear energy. Acta Materialia, 2013, vol. 61, pp. 735–758. DOI: 10.1016/j.actamat.2012.11.004.
3. Braislford A.D., Bullough R. Void growth and its relation to intrinsic point defect properties. Journal of Nuclear Materials, 1978, vol. 69–70, pp. 434–450. DOI: 10.1016/0022-3115(78)90259-3.
4. Watanabe H., Aoki A., Murakami H., Muroga T., Yoshida N. Effects of phosphorus on defect behavior, solute segregation and void swelling in electron irradiated Fe-Cr-Ni alloys. Journal of Nuclear Materials, 1988, vol. 155–157, pp. 815–822. DOI: 10.1016/0022-3115(88)90422-9.
5. Watanabe H., Muroga T., Yoshida N. The temperature dependent role of phosphorus and titanium in microstructural evolution of Fe-Cr-Ni alloys irradiated in FFTF. Journal of Nuclear Materials, 1996, vol. 228, pp. 261–274. DOI: 10.1016/0022-3115(96)80004-3.
6. Okita T., Wolfer W.G., Garner F.A., Sekimura N.Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling. Philosophical Magazine, 2005, vol. 85, no. 18, pp. 2033–2048. DOI: 10.1080/14786430412331331871.
7. Odette G.R., Alinger M.J., Wirth B.D. Recent developments in irradiation resistant steels. Annual Review of Materials Research, 2008, vol. 38, pp. 471–503. DOI: 10.1146/annurev.matsci.38.060407.130315.
8. David C., Panigrahi B.K., Balaji S., Balamurugan A.K., Nair K.G.M., Amarendra G., Sundar C.S., Raj B. A study of the effect of titanium on the void swelling behavior of D9 steels by ion beam simulation. Journal of Nuclear Materials, 2008. vol. 383, pp. 132–136. DOI: 10.1016/j.jnucmat.2008.08.049.
9. Arunkumar J., Abhaya S., Rajaraman R., Amarendra G., Nair K.G.M., Sundar C.S., Raj B. Positron annihilation studies on D9 steel – Effect of Ti concentration. Physica Status Solidi (с), 2009, vol. 6, no. 11. pp. 2319–2321. DOI: 10.1002/pssc.200982097.
10. Perminov D.A., Druzhkov A.P., Pecherkina N.L., Arbuzov V.L. Accumulation of defects in austenitic stainless steels with phosphorus and titanium additions upon electron irradiation at 573 К investigated using positron annihilation spectroscopy. Physics of Metals and Metallography, 2019, vol. 120, no. 3, pp.284–289. DOI: 10.1134/S0031918X19030098.
11. Siegel R.W. Positron annihilation spectroscopy. Annual Review of Materials Science, 1980, vol. 10, pp. 393–425. DOI: 10.1146/annurev.ms.10.080180.002141.
12. Grafutin V.I., Prokop’ev E.P. Positron annihilation spectroscopy in materials structure studies. Physics-Uspekhi, 2002, vol. 45, no. 1, pp. 59–74. DOI: 10.3367/UFNr.0172.200201c.0067.
13. Morillo J., De Novion C.H., Dural J. Neutron and electron radiation defects in titanium and tantalum monocarbides: an electrical resistivity study. Radiation Effects and Defects in Solids, 1981, vol. 55, pp. 67–78. DOI: 10.1080/00337578108225467.
14. Druzhkov A.P., Perminov D.A., Pecherkina N.L. Positron annihilation spectroscopy characterization of effect of intermetallic nanoparticles on accumulation and annealing of vacancy defects in electron-irradiated Fe-Ni-Al alloy. Philosophical Magazine, 2008, vol. 88, pp. 959–976. DOI: 10.1080/14786430802014670.
15. Arbuzov V.L., Druzhkov A.P., Danilov S.E. Effects of phosphorus on defects accumulation and annealing in electron-irradiated Fe-Ni austenitic alloys. Journal of Nuclear Materials, 2001, vol. 295, pp. 273–280. DOI: 10.1016/S0022-3115(01)00505-0.
16. Holzwarth U., Barbieri A., Hansen-Ilzhofer S., Shaaff P., Haaks M.Positron annihilation studies on the migration of deformation induced vacancies in stainless steel AISI 316L. Applied Physics A, 2001, vol. 73, pp. 467–475. DOI: 10.1007/s003390100781.
17. Druzhkov A.P., Arbuzov V.L., Perminov D.A. Positron annihilation study of effects of Ti and plastic deformation on defect accumulation and annealing in electron-irradiated austenitic steels and alloys. Journal of Nuclear Materials, 2005, vol. 341, pp. 153–163. DOI: 10.1016/j.jnucmat.2005.01.021.
Article reference
Perminov D. A. A Positron Annihilation Study of Defect Accumulation in Phosphorus- and Titanium-Alloyed Austenitic Stainless Steels under Electron Irradiation at Room Temperature // Diagnostics, Resource and Mechanics of materials and structures. -
2020. - Iss. 6. - P. 27-34. - DOI: 10.17804/2410-9908.2020.6.027-034. -
URL: http://eng.dream-journal.org/issues/2020-6/2020-6_307.html (accessed: 11/21/2024).
|