Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 5

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

A. L. Kazakov, L. F. Spevak, E. L. Spevak

ON NUMERICAL METHODS FOR CONSTRUCTING BENCHMARK SOLUTIONS TO A NONLINEAR HEAT EQUATION WITH A SINGULARITY

DOI: 10.17804/2410-9908.2020.5.026-044

The paper deals with the construction of exact solutions to a nonlinear heat equation with degeneration in the case of the zero value of the required function. Generically self-similar solutions and traveling wave solutions are considered, the construction of which reduces to solving Cauchy problems for a nonlinear second-order ordinary differential equation with a singularity before the higher derivative. Two approaches are proposed to solve the Cauchy problems: the analytical solution by the power series method and the numerical solution by the boundary element method on a specified segment. A complex computational experiment is carried out to compare the above two methods with each other and with the finite difference methods, namely the Euler method and the fourth-order Runge-Kutta method. Power series segments are used on the first step of the finite difference solutions in order to resolve the singularity. The comparison of the application domains, the accuracy of the solutions and their dependence on the parameters of a certain problem shows that the boundary element method is the most universal, although not the most accurate for some particular examples. The conclusions drawn allow us to construct benchmark solutions to verify the approximate solutions of the nonlinear heat equation by various methods in a wide range of parameter values.

Acknowledgments: The work was supported by the RFBR, project No. 20-07-00407.

Keywords: nonlinear heat equation, exact solution, generically self-similar solution, traveling wave, power se-ries, boundary element method

References:

  1. Vazquez J.L. The Porous Medium Equation: Mathematical Theory, Oxford, Clarendon Press, 2007, 648 р. ISBN-10: 0198569033, ISBN-13: 978-019856903.
  2. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Blow-up in Quasilinear Parabolic Equations, NY, Berlin, Walter de Gruyte, 1995, 534 p. ISBN 3-11-012754-7.
  3. Zel'dovich Ya.B., Kompaneets A.S. Towards a theory of heat conduction with thermal conductivity depending on the temperature. In: Collection of Papers Dedicated to 70th Anniversary of A.F. Ioffe, Moscow, Akad. Nauk SSSR Publ., 1950, pp. 61–71. (In Russian).
  4. Barenblatt G.I., Vishik I.M. On the Final Velocity of Propagation in Problems of Non-stationary Filtration of Liquid and Gas. Prikladnaya matematika i mekhanika, 1956, vol. 20, no. 3, pp. 411–417. (In Russian).
  5. Oleynik O.A., Kalashnikov A.S. Chzhou Yuy-Lin. The Cauchy Problem and Boundary Value Problems for Equations of the type of Non-stationary Filtration. Izvestiya AN SSSR. Seriya Matematicheskaya, 1958, vol. 22, no. 5, pp. 667–704. (In Russian).
  6. Sidorov A.F. In: Izbrannye Trudy: Matematika. Mekhanika [Selected Works: Mathematics. Mechanics]. Moscow, Fizmatlit Publ., 2001, 576 p. (In Russian). ISBN 5-9221-0103-Х.
  7. Kazakov A.L., Lempert A.A. Analytical and Numerical Studies of the Boundary Value Problem of a Nonlinear Filtration with Degeneration. Vychislitelnye tekhnologii, 2012, vol. 17, no. 1, pp. 57–68. (In Russian).
  8. Kazakov A.L., Spevak L.F. Boundary Elements Method and Power Series Method for One-dimensional Nonlinear Filtration Problems. Izvestiya IGU. Seriya Matematika [The Bulletin of Irkutsk State University. Series Mathematics], 2012, vol. 5, no. 2, pp. 2–17. (In Russian).
  9. Kazakov A.L., Spevak L.F. Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form. Applied Mathematical Modelling, 2013, vol. 37, iss. 10–11, pp. 6918–6928. DOI: 10.1016/j.apm.2013.02.026.
  10. Kazakov A.L., Kuznetsov P.A., Spevak L.F. On a Degenerate Boundary Value Problem for the Porous Medium Equation in Spherical Coordinates. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, vol. 20, no. 1, pp. 119–129. (In Russian).
  11. Kazakov A.L., Spevak L.F. An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry. Applied Mathematical Modelling, 2015, vol. 40, iss. 2, pp. 1333–1343. DOI: 10.1016/j.apm.2015.06.038.
  12. Spevak L.F., Kazakov A.L. Constructing numerical solutions to a nonlinear heat conduction equation with boundary conditions degenerating at the initial moment of time. In: AIP Conference Proceedings, 2016, vol. 1785, iss. 1, pp. 040076. DOI: 10.1063/1.4967136
  13. Kazakov A.L., Kuznetsov P.A., Spevak L.F. A heat wave problem for a degenerate nonlinear parabolic equation with a specified source function. In: AIP Conference Proceedings, 2018, vol. 2053, pp. 030024. Available at: https://doi.org/10.1063/1.5084385
  14. Kazakov A.L., Nefedova O.A., Spevak L.F. Solution of the Problem of Initiating the Heat Wave for a Nonlinear Heat Conduction Equation Using the Boundary Element Method. Computational Mathematics and Mathematical Physics, 2019, vol. 59, no. 6, pp. 1015–1029. DOI: 10.1134/S0965542519060083.
  15. Kazakov A.L. On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation. Sibirskiye Elektronnye Matematicheskiye Izvestiya [Siberian Electronic Mathematical Reports], 2019, vol. 16, pp. 1057–1068. (In Russian). DOI: 10.33048/semi.2019.16.073. Available at: http://semr.math.nsc.ru/v16/p1057-1068.pdf
  16. Spevak L.F., Kazakov A.L. Solving a degenerate nonlinear parabolic equation with a specified source function by the boundary element method. In: AIP Conference Proceedings, 2017, vol. 1915, pp. 040054. Available at: https://doi.org/10.1063/1.5017402
  17. Kazakov A.L., Spevak L.F., Nefedova O.A. On the Numerical-Analytical Approaches to Solving a Nonlinear Heat Conduction Equation with a Singularity. Diagnostics, Resource and Mechanics of materials and structures, 2018, iss. 6, pp. 100–116. DOI: 10.17804/2410-9908.2018.6.100-116. Available at: http://dream-journal.org/issues/2018-6/2018-6_232.html
  18. Banerjee P.К., Butterheld R. Boundary element methods in engineering science, US, McGraw-Hill Inc., 1981, 452 р. ISBN-10: 0070841209, ISBN-13: 978-0070841208.
  19. Nardini D., Brebbia C.A. A New Approach to Free Vibration Analysis using Boundary Elements. Applied Mathematical Modelling, 1983, vol. 7, no. 3, pp. 157–162. DOI: 10.1016/0307-904X(83)90003-3.
  20. Wrobel L.C., Brebbia C.A. Nardini D. The dual reciprocity boundary element formulation for transient heat conduction. In: Finite elements in water resources VI, Springer-Verlag, Berlin, Germany, 1986, pp. 801–811.
  21. Tanaka M., Matsumoto T., Yang Q.F. Time-stepping boundary element method applied to 2-D transient heat conduction problems. Applied Mathematical Modelling, 1994, vol. 18, pp. 569–576. DOI: 10.1016/0307-904X(94)90142-2.
  22. Tanaka M., Matsumoto T., Takakuwa S. Dual reciprocity BEM for time-stepping approach to the transient heat conduction problem in nonlinear materials. Computer Methods in Applied Mechanics and Engineering, 2006, vol. 195, pp. 4953–4961. DOI: 10.1016/j.cma.2005.04.025.
  23. Divo E., Kassab A.J. Transient non-linear heat conduction solution by a dual reciprocity boundary element method with an effective posteriori error estimator. Computers, Materials and Continua, 2005, vol. 2, pp. 277–288. DOI: 10.3970/cmc.2005.002.277.
  24. Wrobel L.C., Brebbia C.A. The dual reciprocity boundary element formulation for nonlinear diffusion problems. Computer Methods in Applied Mechanics and Engineering, 1987, vol. 65, pp. 147–164. DOI: 10.1016/0045-7825(87)90010-7.
  25. Singh K.M., Tanaka M. Dual reciprocity boundary element analysis of transient advection-diffusion. International Journal of Numerical Methods for Heat & Fluid Flow, 2003, vol. 13, pp. 633–646. DOI: 10.1108/09615530310482481.
  26. Al-Bayati S.A., Wrobel L.C. A novel dual reciprocity boundary element formulation for two-dimensional transient convection–diffusion–reaction problems with variable velocity. Engineering Analysis with Boundary Elements, 2018, vol. 94, pp. 60–68. DOI: 10.1016/j.enganabound.2018.06.001.
  27. Fendoglu H., Bozkaya C., Tezer-Sezgin M. DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations. Engineering Analysis with Boundary Elements, 2018, vol. 93, pp. 124–134. DOI: 10.1016/j.enganabound.2018.04.011.
  28. Powell M.J.D. The Theory of Radial Basis Function Approximation. In: W. Light, ed. Advances in Numerical Analysis, Oxford Science Publications, Oxford, UK, 1992, vol. 2.
  29. Golberg M.A., Chen C.S., Bowman H. Some recent results and proposals for the use of radial basis functions in the BEM. Engineering Analysis with Boundary Elements, 1999, vol. 23, pp. 285–296. DOI: 10.1016/S0955-7997(98)00087-3.
  30. Kazakov A.L., Kuznetsov P.A., Spevak L.F. Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source. Journal of Mathematical Sciences, 2019, vol. 239, no. 2, pp. 111–122. DOI 10.1007/s10958-019-04294-x.
  31. Kazakov A.L., Spevak L.F. Numerical Study of Travelling Wave Type Solutions for the Nonlinear Heat Equation. In: AIP Conference Proceedings, 2019, vol. 2176, pp. 030006. DOI: 10.1063/1.5135130.
  32. Polyanin A.D., Zaytsev V.F., Zhurov A.I. Nelineynye uravneniya matematicheskoy fiziki i mekhaniki. Metody resheniya [A Nonlinear Equations of Mathematical Physics and Mechanics. Solution Methods]. Moscow, Yurayt Publ., 2017, 256 p. (In Russian). ISBN 978-5-534-02317-6.


PDF      

Article reference

Kazakov A. L., Spevak L. F., Spevak E. L. On Numerical Methods for Constructing Benchmark Solutions to a Nonlinear Heat Equation with a Singularity // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 5. - P. 26-44. -
DOI: 10.17804/2410-9908.2020.5.026-044. -
URL: http://eng.dream-journal.org/issues/2020-5/2020-5_306.html
(accessed: 11/21/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru