Electronic Scientific Journal
Diagnostics, Resource and Mechanics 
         of materials and structures


advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 4

All Issues
2024 Issue 2
2024 Issue 1
2023 Issue 6
2023 Issue 5
2023 Issue 4
2023 Issue 3
2023 Issue 2
2023 Issue 1
2022 Issue 6
2022 Issue 5
2022 Issue 4
2022 Issue 3
2022 Issue 2
2022 Issue 1
2021 Issue 6
2021 Issue 5
2021 Issue 4
2021 Issue 3
2021 Issue 2
2021 Issue 1
2020 Issue 6
2020 Issue 5
2020 Issue 4
2020 Issue 3
2020 Issue 2
2020 Issue 1
2019 Issue 6
2019 Issue 5
2019 Issue 4
2019 Issue 3
2019 Issue 2
2019 Issue 1
2018 Issue 6
2018 Issue 5
2018 Issue 4
2018 Issue 3
2018 Issue 2
2018 Issue 1
2017 Issue 6
2017 Issue 5
2017 Issue 4
2017 Issue 3
2017 Issue 2
2017 Issue 1
2016 Issue 6
2016 Issue 5
2016 Issue 4
2016 Issue 3
2016 Issue 2
2016 Issue 1
2015 Issue 6
2015 Issue 5
2015 Issue 4
2015 Issue 3
2015 Issue 2
2015 Issue 1






A. B. Vandyshev


DOI: 10.17804/2410-9908.2020.4.06-27

Mathematical simulation is used to analyze systematically the results of testing an individual disk-type membrane-catalytic module for producing high-purity hydrogen from methane, with a capacity of about 0.3 m3H2/h, and the design data of a membrane-catalytic reactor based on 32 individual disk-type modules for producing high-purity hydrogen from diesel fuel, with a capacity of 7.45 m3H2/h.

The used mathematical model adequately and on a good quantitative level describes the experimental and design data known from the literature. In terms of the used model representations, possible ways of increasing both the capacity of disk-type membrane-catalytic devices and the efficiency of extracting high-purity hydrogen from the original hydrocarbon material are considered.

Keywords: mathematical modeling, membrane-catalytic systems, high purity hydrogen, methane, diesel-fuel oil


  1. Gallucci F., Fernandez E., Corengia P., Van Sint Annalanda M. Recent advances on membranes and membrane reactors for hydrogen production (Review). Chemical Engineering Science, 2013, vol. 92, pp. 40–66. DOI: 10.1016/j.ces.2013.01.008.
  2. Dittmar B., Behrens A., Schödel N., Rüttinger M., Franco Th., Straczewski G., Dittmeyer R. Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes. Int. J. Hydrogen Energy, 2013, vol. 38 (21), pp. 8759–8771. DOI: 10.1016/j.ijhydene.2013.05.030.
  3. Shigarov A., Kirillov V., Landgraf I. Computational study of Pd-membrane CH4 steam reformer with fixed catalyst bed: Searching for a way to increase membrane efficiency. Int. J. Hydrogen Energy, 2014, vol. 39, no. 35, pp. 20072–20093. DOI: 10.1016/j.ijhydene.2014.10.018.
  4. Vandyshev A.B., Kulikov V.A. Analysis of parameters of high-purity hydrogen production from methane in a laboratory-scale membrane reformer with an ultrathin palladium membrane. Chemical and Petroleum Engineering, 2015, vol. 51, nos. 3–4, pp. 250–256. DOI: 10.1007/s10556-015-0032-1.
  5. Kirillov V.A., Shigarov A.B. Biofuels as a promising source of hydrogen for fuel cell power plants. Theoretical Foundations of Chemical Engineering, 2016, vol. 50, iss. 4, pp. 351–365. DOI: 10.1134/S0040579516040369.
  6. Vandyshev A.B., Kulikov V.A.  Estimate of high-purity hydrogen production efficiency in membrane-catalytic systems from steam reforming products of gasoline, kerosene, and diesel oil. Chemical and Petroleum Engineering, 2018, vol. 53, nos. 9–10, pp. 593–597. DOI: 10.1007/s10556-018-0386-2.
  7. Shirasaki Y., Tsuneki T., Ota Y., Yasuda I., Tachibana S., Nakajima H., Kobayashi K. Development of membrane reformer system for highly efficient hydrogen production from natural gas. Int. J. Hydrogen Energy, 2009, vol. 34, iss. 10, pp. 4482–4487. DOI: 10.1016/j.ijhydene.2008.08.056.
  8. Murav'ev L.L., Vandyshev A.B., Makarov V.M. Modeling of membrane extraction of hydrogen from the products of steam conversion of hydrocarbons. Theoretical Foundations of Chemical Engineering, 1999, vol. 33 (3), pp. 258–263.
  9. Vandyshev A.B. Analyzing the parameters of membrane catalytic systems for  extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling. Diagnostics, Resource and Mechanics of materials and structures (DREAM open-access journal), 2016, iss. 4, pp. 6–46. DOI: 10.17804/2410-9908.2016.4.006-045.   URL: https://dream-journal.org/DREAM_Issue_4_2016_Vandyshev_A.B._006_045.pdf
  10. Vandyshev A.B., Kulikov V.A. Analysis of the calculated parameters of a model membrane-catalytic converter for the production of high-purity hydrogen from methane. Chemical and Petroleum Engineering, 2018, vol. 54, nos. 1–2, pp. 31–37. DOI: 10.1007/s10556-018-0434-y.
  11. Vandyshev A.B., Kulikov V.A. Analysis of parameters and modes for producing high-purity hydrogen from natural gas in membrane-catalytic devices. Chemical and Petroleum Engineering, 2017, vol. 53, nos. 1–2, pp. 49–55. DOI: 10.1007/s10556-017-0293-y.
  12. Vandyshev A.B. & Kulikov V.A. Analysis of the Efficiency of a Pd/Ag Membrane with a Thickness of 2.25 Microns on a Porous Ceramic Substrate in a Laboratory Membrane Reactor. Chemical and Petroleum Engineering, 2019, vol. 55 (3), pp. 129–135. DOI: 10.1007/s10556-019-00592-y.
  13. Shigarov A.B., Кirillov V.A., Аmosov Y.I., Brayko A.S., Avakov V.B., Landgraf I.К., Urusov A.R., Jivulko S.A., Izmaylovich V.V.  Membrane reformer module with Ni-foam catalyst for pure hydrogen production from methane: Experimental demonstration and modeling. Int. J. Hydrogen Energy, 2017, vol. 42, no. 10, pр. 6713–6726. DOI: 10.1016/j.ijhydene.2016.12.057.
  14. Kirillov V.A., Shigarov A.B., Amosov Yu.I., Belyaev V.D., Gerasimov E.Yu. Production of Pure Hydrogen from Diesel Fuel by Steam Pre-Reforming and Subsequent Conversion in a Membrane Reactor. Petroleum Chemistry, 2018, vol. 58, no. 2, рp. 103–113. DOI: 10.1134/S0965544118020020.
  15. Vandyshev A.B., Kulikov V.A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane. Chemical and Petroleum Engineering, 2020, vol. 55, nos. 9–10, pр. 725–732. DOI: 10.1007/s10556-020-00686- y.
  16. Poristye pronitsaemye materialy: spravochnik [Porous Permeable Materials: Handbook, ed. by S.V Belov]. Moscow, Metallurgiya Publ., 1987, 335 p. (In Russian). 
  17. Zhivulko S.A., Avakov V.B., Landgraft I.K., Urusov A.R. Experience of practical implementation of hydrocarbon fuel conversion technology with hydrogen extraction from the reaction zone. Trudy V Vserossiyskoy konferentsii [The 5th All-Rissian Conference “Fuel Elements and Power Installation Based on Them” : Proceedings], Suzdal, 2018, pp. 62–64. (In Russian).
  18. Shigarov A.B., Kirillov V.A. Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts. Theor. Found. Chem. Eng., 2012, vol. 46, no. 2, pp. 97–107. DOI: 10.1134/S004057951202011X.
  19. Vandyshev A.B., Kulikov V.A. Evaluation of design parameters for a 32- module disk-type membrane-catalytic reactor for producing high-purity hydrogen from diesel fuel. Chemical and Petroleum Engineering, 2020, vol. 55, nos. 9–10, pр. 815–820. DOI: 10.1007/s10556-020-00698-8.
  20. Vandyshev A.B., Makarov V.M., Usova T.B. Analyzing the conditions of hydrogen extraction from multicomponent hydrogen-containing gas mixtures by means of triple diagrams С-Н-О. IMACH UrO RAN, 1998, deposited in VINITI 09.12.98. (In Russian).
  21. Lukyanov B.N., Andreev D.V., Parmon V.N. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal, 2009, vol. 154, p. 258–266. DOI: 10.1016/j.cej.2009.04.023.


Article reference

Vandyshev A. B. A Systematic Analysis of the Parameters of Disk-Type Membrane-Catalytic Devices for Producing High-Purity Hydrogen from Methane and Diesel Fuel // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 4. - P. 6-27. -
DOI: 10.17804/2410-9908.2020.4.06-27. -
URL: http://eng.dream-journal.org/issues/2020-4/2020-4_284.html
(accessed: 05/22/2024).


impact factor
RSCI 0.42


MRDMS 2024
Google Scholar



Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Home E-mail 0+

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru