Electronic Scientific Journal
 
Diagnostics, Resource and Mechanics 
         of materials and structures
Рус/Eng  

 

advanced search

IssuesAbout the JournalAuthorContactsNewsRegistration

2020 Issue 3

All Issues
 
2024 Issue 5
 
2024 Issue 4
 
2024 Issue 3
 
2024 Issue 2
 
2024 Issue 1
 
2023 Issue 6
 
2023 Issue 5
 
2023 Issue 4
 
2023 Issue 3
 
2023 Issue 2
 
2023 Issue 1
 
2022 Issue 6
 
2022 Issue 5
 
2022 Issue 4
 
2022 Issue 3
 
2022 Issue 2
 
2022 Issue 1
 
2021 Issue 6
 
2021 Issue 5
 
2021 Issue 4
 
2021 Issue 3
 
2021 Issue 2
 
2021 Issue 1
 
2020 Issue 6
 
2020 Issue 5
 
2020 Issue 4
 
2020 Issue 3
 
2020 Issue 2
 
2020 Issue 1
 
2019 Issue 6
 
2019 Issue 5
 
2019 Issue 4
 
2019 Issue 3
 
2019 Issue 2
 
2019 Issue 1
 
2018 Issue 6
 
2018 Issue 5
 
2018 Issue 4
 
2018 Issue 3
 
2018 Issue 2
 
2018 Issue 1
 
2017 Issue 6
 
2017 Issue 5
 
2017 Issue 4
 
2017 Issue 3
 
2017 Issue 2
 
2017 Issue 1
 
2016 Issue 6
 
2016 Issue 5
 
2016 Issue 4
 
2016 Issue 3
 
2016 Issue 2
 
2016 Issue 1
 
2015 Issue 6
 
2015 Issue 5
 
2015 Issue 4
 
2015 Issue 3
 
2015 Issue 2
 
2015 Issue 1

 

 

 

 

 

V. I. Bobrovskii

ON MODELS FOR ESTIMATING THE POST-RADIATION DEFECT STATE OF THE γ‘-PHASE

DOI: 10.17804/2410-9908.2020.3.047-060

Processes that take place in the precipitates of γ‘-phase under irradiation with fast neutrons are topical and draw attention when one searches for ways of improving radiation resistance of structural reactor steels. A special feature of these processes is that the formation of vacancies and interstices proceeds at the background of a disordering of the initial crystal lattice, which manifests itself in the formation of antisite defects. X-ray and neutron diffraction techniques are efficient tools of studying changes that occur in the post-radiation structural state of such systems. However, interpretation of the experimental results calls for more complicated models for the description of structural effects exerted by accumulation of radiation defects in the material than those developed before for elementary metals. Several models are proposed in this paper.

Acknowledgments: The research was carried out at the IMP Neutron Material Science Complex within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme “Neutron” No. AAAA-A19-119112590082-1).

Keywords: neutron irradiation, radiation-induced processes, vacancies, interstitials, antisite defects.

References:

  1. Alab’yev V.M., Vologin V.G., Dubinin S.F., Lapin S.S., Parkhomenko V.D., Sagaradze V.V. Neutron diffraction and electron microscopic investigation of decomposition and radiationinduced ageing of Cr-Ni-Ti austenitic alloys. Physics of Metals and Metallography, 1990, vol. 70, no. 2, pp. 131–137.
  2. Sagaradze V.V., Nalesnik V.M., Lapin S.S., Aliabev V.M. Precipitation hardening and radiation damageability of austenitic stainless steels. Journal of Nuclear Materials, 1993, vol. 202, no. 1–2, pp. 137–144. DOI: 10.1016/0022-3115(93)90036-X.
  3. Okita T., Wolfer W.G., Garner F.A., Sekimura N. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling. Philosophical Magazine, 2005, vol. 85, no. 18, pp. 2033–2048. DOI: 10.1080/14786430412331331871.
  4. Voronin V.I., Berger I.F., Goshchitskii B.N. Structural changes in a model alloy after irradiation of Fe62Ni35Ti3 with fast neutrons and isochronous temperature annealing. Physics of Metals and Metallography, 2012, vol. 113, no. 9, pp. 878–882. DOI: 10.1134/S0031918X12090141.
  5. Mosbrucker P.L., Brown D.W., Anderoglu O., Balogh L., Maloy S.A., Sisneros T.A., Dippel A.C. Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel. Journal of Nuclear Materials, 2013, vol. 443, no. 1, pp. 522–530. DOI: 10.1016/j.jnucmat.2013.07.065.
  6. Voronin V.I., Arbuzov V.L., Bobrovskii V.I., Danilov S.E., Kozlov K.A., Proskurnina N.V., Sagaradze V.V. Peculiarities of radiation-induced processes in the Cr-Ni-Mo austenitic steels studied by neutron diffraction. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 80–89. DOI: 10.17804/2410-9908.2015.5.080-089. Available at: http://dream-journal.org/issues/2015-5/2015-5_46.html (accessed: 17.08.2020).
  7. Proskurnina N.V., Bobrovskii V.I., Goshchitskii B.N., Volkov A.Yu., Voronin V.I. Radiation induced disordering in Cu3Au. Radiation Physics and Chemistry, 2020, vol. 170, pp. 108654. DOI: 10.1016/j.radphyschem.2019.108654.
  8. Cahn R.W. Lattice parameter changes on disordering intermetallics. Intermetallics, 1999, vol. 7, pp. 1089–1094. DOI: 10.1016/S0966-9795(99)00035-7.
  9. Bhatia M.L., Cahn R.W. Lattice parameter and volume changes on disordering. Intermetallics, 2005, vol. 13, pp. 474–483. DOI: 10.1016/S0966-9795(99)00035-7.
  10. Konobeevskii, S.T., Deistvie izluchenii na materialy. Vvedenie v radiatsionnoe materialovedenie [The Effects of Radiation on Materials. Introduction to the Radiation Material Science]. Moscow, Atomizdat Publ., 1967. (In Russian).
  11. Kovács I., Elsayed H. Point defects in metals. J. Mater Sci., 1976, vol. 11, pp. 529–559. DOI: 10.1007/BF00540934.
  12. Beneagoub A., Thome L. Amorphization Mechanisms in Ion-Bombarded Metallic Alloys.  Phys. Rev. B: Condens. Matter., 1988, vol. 38, pp. 10205–10216.  DOI: 10.1103/PhysRevB.38.10205.
  13. Eshelby J.D. The Continuum Theory of Lattice Defects. Solid State Physics, 1956, vol. 3, pp. 79–144. DOI: 10.1016/S0081-1947(08)60132-0.
  14. Was G.S. Fundamentals of Radiation Materials Science. Metals and Alloys, second ed., New York, Springer, 2017, 1002 p. ISBN 978-1-4939-3436-2. DOI:  10.1007/978-1-4939-3438-6.


PDF      

Article reference

Bobrovskii V. I. On Models for Estimating the Post-Radiation Defect State of the γ‘-Phase // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 3. - P. 47-60. -
DOI: 10.17804/2410-9908.2020.3.047-060. -
URL: http://eng.dream-journal.org/issues/2020-3/2020-3_293.html
(accessed: 12/02/2024).

 

impact factor
RSCI 0.42

 

MRDMS 2024
Google Scholar


NLR

 

Founder:  Institute of Engineering Science, Russian Academy of Sciences (Ural Branch)
Chief Editor:  S.V. Smirnov
When citing, it is obligatory that you refer to the Journal. Reproduction in electronic or other periodicals without permission of the Editorial Board is prohibited. The materials published in the Journal may be used only for non-profit purposes.
Contacts  
 
Home E-mail 0+
 

ISSN 2410-9908 Registration SMI Эл № ФС77-57355 dated March 24, 2014 © IMACH of RAS (UB) 2014-2024, www.imach.uran.ru